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Abstract 

Learning environmental biases is a rational behavior: by using prior odds, Bayesian 

networks rapidly became a benchmark in machine learning. Moreover, a growing body of 

evidence now suggests that humans are using base rate information. Unsupervised 

connectionist networks are used in computer science for machine learning and in 

psychology to model human cognition, but it is unclear whether they are sensitive to prior 

odds. In this paper, we show that hard competitive learners are unable to use 

environmental biases while recurrent autoassociative memories use frequency of 

exemplars and categories independently. Hence, it is concluded that recurrent 

autoassociative memories are more useful than hard competitive networks to model 

human cognition and have a higher potential in machine learning. 
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ARE UNSUPERVISED NEURAL NETWORKS IGNORANT? SIZING THE EFFECT OF 

ENVIRONMENTAL DISTRIBUTIONS ON UNSUPERVISED LEARNING 

Laplace, great mathematician of the Enlightment, once stated that "ignorance can be 

expressed as uniform priors" (cited in Gigerenzer & Hoffrage, 1995). This affirmation 

was motivated by his understanding of the world, which is basically made of biases. For 

instance, it is common knowledge that one is more likely to run into dogs than wolves in 

a city. This information is useful when a partially occluded animal, which might be either 

a dog or a wolf, is encountered downtown. In this circumstance, the most probably 

correct inference is that the animal is a dog. The same type of reasoning is sound when 

waking up at night and seeing a dog while the lights are off. Even though there is not 

enough visual information to identify with certainty the family's pet, it is rational to infer 

so, because the probability that another dog is in one's own room at night varies from 

slight to null. In the former example, the frequency of categories was used to correctly 

identify an unknown item while, in the latter, it was the frequency of exemplars. 

 Depending on the level of analysis, both these frequencies must be taken into 

account in order to achieve rational or optimal behavior (Kahneman, Slovic & Tversky, 

1982). When facing uncertain information, the rational (normative) way of computing 

category membership is to employ Bayes’ theorem (Anderson, 1991; Oaksford & Chater, 

1999), which uses prior odds to compute the posterior probability (viz. the updated 

probability of category membership after consideration of new information): 
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where Cj is category j and O is a new observation. In words, the probability of category 

membership, given a new observation, is dependent of its a priori probability and its 

inverse conditional probability. The resulting posterior probability is optimal according 

to the maximum likelihood criterion, which justifies the use of Bayes’ theorem in belief 

networks (Pearl, 1988). These Bayesian networks are commonly employed as 

benchmarks in machine learning (Russell & Norvig, 2003). 

 Not only are base rates necessary to increase the performance of applications in 

computer science but cognitive models must also account for them. In fact, an increasing 

body of evidence is now showing that humans are using base rate information (Cosmides 

& Tooby, 1996; Gigerenzer & Hoffrage, 1995; Körding & Wolpert, 2004; Wagman, 

2003). For instance, it has been shown that presenting a problem in frequentist format, in 

opposition to probability (e.g., 10 / 100 vs. 0.1), elicits the use of base rates as well as 

Bayes’ theorem in human participants (Cosmides & Tooby, 1996; Gigerenzer & 

Hoffrage, 1995). According to Gigerenzer and Hoffrage, the advantage of the frequentist 

format stems from the observation that frequency is a natural way to encode probabilities 

by simply maintaining counts of past experiences. Cosmides and Tooby further argued 

that using frequentist representations is adaptive and that the use of this type of encoding 

is a result of evolutionary processes. 

 Beside the possible phylogenic advantage of encoding frequency information 
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(Cosmides & Tooby, 1996), the effects of category and exemplar frequency have 

received much attention in cognitive psychology since the mid eighties (Erickson & 

Kruschke, 1998; Kruschke, 1996; Nosofsky, 1988, 1991; Nosofsky & Palmeri, 1997; 

Rips, 1989; Shin & Nosofsky, 1992). For instance, Rips (1989) has provided participants 

with histograms showing the frequency distributions of temperatures measured in January 

and July. Together, these two data sets formed a bimodal distribution in which middle 

temperatures were absent. After inspection of the histograms, the participants were asked 

to infer if new temperatures had been measured in January or July. The results of this 

experiment showed that the categorization judgments are sensitive to frequency: the 

participants classified the new temperatures in the same category as the most frequent 

alternative. 

 Kruschke (1996) has found a similar effect of category frequency by asking 

participants to use a group of symptoms to classify diseases. In a series of experiments, 

including various levels of cue-validity, the classification results reflected the prior 

probabilities of the diseases when the cues did not provide sufficient information to 

confidently classify the stimuli. Moreover, the participants were afterward asked to 

estimate the frequency of appearance of each disease. The odd resulting from the 

participants’ guesses showed that they were aware of the bias toward a particular disease 

and have been consciously using this information. 

 Concerning the effect of exemplar frequency, it was mostly studied in the 

exemplarist framework by Nosofsky and his colleagues (Nosofsky, 1988, 1991; Nosofsky 

& Palmeri, 1997; Shin & Nosofsky, 1992). In Nosofsky (1988), typical and atypical 

members of the pinkish and brownish Munsell color categories were biased in order to 
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verify: 1) the effect of exemplar frequency and, 2) the interaction between exemplar 

typicality and frequency. The results showed that more frequent exemplars were better 

categorized (and faster, see Nosofsky & Palmeri, 1997), notwithstanding typicality. Also, 

this advantage of biased stimuli spread to other category members which were similar. 

On the other hand, classification accuracy of stimuli in the opposite category, which were 

nevertheless similar to biased stimuli, was decreased. According to Anderson (1991), this 

(dis) advantage of the region surrounding biased exemplars can be simply explained by a 

shift of the category’s center toward the biased stimuli. Regarding exemplar typicality, 

more frequent stimuli were judged more typical after training. 

 In another series of experiments, Nosofsky (1991) tested the effect of exemplar 

frequency on the recognition and categorization performances of Brunswick faces (Reed, 

1973). The results have shown that frequency of presentation affected both recognition 

and categorization. However, the latter had a greater advantage than the former. Also, 

other experiments involving abstract polygons (Homa, Dunbar & Nohre, 1991) showed 

that the size of the frequency effect is not modulated by the size of the category (Shin & 

Nosofsky, 1992). 

 Erickson and Kruschke (1998) later found a much stronger result concerning the 

effect of exemplar frequency on categorization. In developing ATRIUM, a hybrid model 

which uses both an exemplarist (ALCOVE: Kruschke, 1991) and a rule module, Erickson 

and Kruschke created a categorization task in which some stimuli could be classified 

using a deterministic rule while others were exceptions that needed to be dealt with by the 

exemplarist module. The aim of this manipulation was to isolate the effect of each 

module, and it was presumed that frequency of exemplar would have an effect on 
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exception stimuli but not on those covered by the rule. Surprisingly, frequency effects 

were found on both rule and exception stimuli. Moreover, the magnitude of the effect was 

the same.  

Together, all the preceding results make a strong case for the presence of category 

and exemplar frequency effects on human performance: clearly, humans aren’t “ignorant” 

(in the Laplacian sense). Are psychological models of human categorization able to 

account for all these results? Past arguments have been made about the inadequacy of 

backpropagation neural networks to plausibly model environmental feedback (for 

example, see Proulx & Hélie, 2005). As a result, several modelers fell back on 

unsupervised learning to train connectionist models (Anderson et al., 1977; Barlow, 

1989; Bégin & Proulx, 1996; Carpenter & Grossberg, 1987; Grossberg, 1976a, 1976b; 

Kohonen, 1984; Proulx & Hélie, 2005; Rumelhart & Zipser, 1986). However, very little 

is known about the capacity of unsupervised artificial neural networks (ANNs) to learn 

environmental biases. Hence, the aim of the present paper is to test the “ignorance” of 

two popular families of such networks: recurrent associative memories (RAMs: e.g., 

Anderson et al., 1977; Hopfield, 1982) and competitive networks (e.g., Carpenter & 

Grossberg, 1987; Kohonen, 1984; Rumelhart & Zipser, 1986).  

Unsupervised Neural Networks  

Unsupervised ANNs have been extensively used in computer science (Bishop, 1995; 

Cichocki & Unbehaun, 1993; Russell & Norvig, 2003) and psychological modeling 

(Anderson et al., 1977; Carpenter & Grossberg, 1987; Grossberg, 1976a, 1976b; 

McClelland, 1998). In particular, competitive networks (e.g., Carpenter & Grossberg, 

1987; Grossberg, 1976a, 1976b; Kohonen, 1984; Nowlan, 1989; Rumelhart & Zipser, 
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1986) and RAMs (e.g., Anderson et al., 1977; Bégin & Proulx, 1996; Chartier & Proulx, 

2005; Hopfield, 1982) are the most popular families of unsupervised ANNs and their 

“ignorance” has never been tested directly. RAMs, which are usually trained using some 

variant of Hebbian learning (Kohonen, 1972), are known to minimize the following 

Lyapunov function (Cohen & Grossberg, 1983; Diamantaras & Kung, 1996; Golden, 

1986): 

WxxX T
2
1)( −=E  (2) 

where x is a stimulus vector and W is the weight matrix. After training, this energy 

function represents half the negative of the output’s variance and, hence, RAMs trained 

using hebbian learning can be understood as unstable principal component analyzers 

(Diamantaras & Kung, 1996). However, no clear statement is made about RAMs’ 

sensitivity to environmental biases. 

 Competitive networks can be separated in two distinct categories: hard 

competitive learners (e.g. Carpenter & Grossberg, 1987; Grossberg, 1976a, 1976b; 

Rumelhart & Zipser, 1986) and soft competitive learners (e.g. Kohonen, 1984; Nowlan, 

1989). The former refers to networks in which only the winning unit’s weights are 

updated (the winning unit is the closest to the stimulus shown according to some metric) 

while the latter refers to networks in which all weights are updated by an amount 

inversely related to their distance from the stimulus shown. The topic of this paper is 

restricted to hard competitive learners1. Competitive networks are known to maximize the 

overlap of stimuli and weights (Rumelhart & Zipser, 1986). In other words, a stable 

weight vector corresponds to the average of the stimuli that maximally activates it 

(Nowlan, 1989), and the network performs a k-means cluster analysis (Hastie, Tibshirani 
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& Friedman, 2001). Again, it is unclear whether this averaging accounts for 

environmental biases. 

If RAMs and competitive learners turn out to be “ignorant” to the environmental 

biases, they would be poor alternatives to backpropagation neural networks for two 

reasons. First, ignorant models are unfit for engineering purposes because they are 

bounded to sub-optimality. Second, they would poorly reflect human performance, in 

which there is no apparent “ignorance” concerning these biases.  

To summarize, whether the goal is to model human cognition or create an optimal 

ANN in a given application context, the chosen ANN must be able to absorb the 

environmental distribution in order to correctly fulfill its duty. Competitive neural 

networks and RAMs are used in both these contexts but they have never been tested as to 

their capacity to reflect environmental biases. This is precisely the aim of the present 

work. 

Overview 

In order to test the whole families of competitive networks (e.g. Carpenter & Grossberg, 

1987; Grossberg, 1976a, 1976b; Rumelhart & Zipser, 1986) and RAMs (e.g. Anderson et 

al., 1977; Bégin & Proulx, 1996; Chartier & Proulx, 2005; Hopfield, 1982), two sets of 

simulations were performed. In the first set, the simulations were completed with the 

simplest network of each, in the simplest possible environment: an orthonormal world 

composed of two categories. Therefore, every stimulus was represented by a unit vector 

and the categories were orthogonal. It is important to note that, if the networks are unable 

to estimate prior odds in this simple environment, it follows that they are unable to 

estimate those odds in any other environments.  
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In the second set of simulations, complexity was increased by using more 

sophisticated networks in more complex environments. In this case, correlated patterns 

from three different categories were used. These simulations were performed to test 

whether the behavior of these families of ANNs remained analogous in situations closer 

to the real world. 

Obviously, the more sophisticated networks could have been used in both 

simulation sets. However, the choice of using simpler networks in the simple 

environment was motivated by: 1) simpler networks are usually linear, which allows in-

depth analyses of their performance and, 2) one of the goals of this paper was to test the 

learning capacity of the whole families of networks. Hence, if the complex representative 

of one family of networks happens to be “ignorant”, this incapacity might result from 

some superfluous axiom. However, the simple networks used in the first simulation set 

had the minimal set of axioms needed to be a member of the RAMs’ or the competitive 

networks’ families. Therefore, the incapacity of one of these networks to reflect 

environmental biases would make a strong case about an important flaw present in all the 

members of its family. 

Simulation set 1: The orthonormal world 

Stimuli  

The stimuli used for the simulations are shown in Fig. 1. As seen, the stimuli were bipolar 

vectors composed of eight units. Because each stimulus was represented by a unit vector, 

the white and black squares were coded as ±8-1/2. The dimensionality of the stimuli was 

chosen to be low in order to test the models in a simple situation: if the models are unable 
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to estimate frequencies in low dimensionality, it is useless to test them in higher 

dimensional spaces. 

Insert Fig. 1 about here 

 As shown in Fig. 1, the first three stimuli were arbitrarily labeled as category “A” 

and the remaining as category “B”. The within-category correlation was constant and 

equal to 0.5. The between-category correlation was null, because the categories were 

orthogonal.  

Models: The two ANNs were a simple Hebbian learning RAM (Anderson et al., 1977) 

and the simplest competitive network (Rumelhart & Zipser, 1986). As for all ANNs, they 

can be entirely described by their architecture, transfer function, and learning rule. 

RAM  

The architecture of the RAM used in this set of simulations is shown in Fig. 2a. In 

the present case, the network was composed of eight units. The transmission rule 

is described by: 

 [ ] [ ] [ ]( )f φ+ = +Wt 1 t tx x x  (3) 

where x[t] is the stimulus at time t, W is the weight matrix and φ  is a restraining 

parameter (Bégin & Proulx, 1996). When φ  is set to null, this transmission rule is 

identical to the one proposed by Hopfield (1982), and when it is set to one, it is 

identical to the rule proposed by Anderson et al. (1977). It is important to note 

that the value of this parameter does not affect the emergent properties of the 

model: when used with iterative Hebbian learning (Eq. 5), φ  can take any non-

null value and only the speed of convergence is affected. Hence, for simplicity, φ  
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was set to one in the present simulations (as hinted by the block diagram). The 

transfer function was a saturation limiter described by: 



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 where x is the activation of a given unit. This saturation function was used in the 

Brain-State-in-a-Box (Anderson et al., 1977). 

Insert Fig. 2 about here 

 The learning rule was a simple hebbian function (Kohonen, 1972) 

described by: 

[ ] [ ] [ ] [ ] )(1
Txx ppkk η+= −WW  (5)

where W[k] is the weight matrix at the kth trial, the second term is the weight 

change, η is a learning parameter and p is the number of iterations in the network 

prior to learning. As suggested by Anderson and his colleagues (1977), p was set 

to 7 and η to 0.0001.  

Competitive neural network 

The simple competitive model proposed by Rumelhart and Zipser (1986) was 

used in this simulation set. Its architecture is that of a standard feedforward 

network composed of two layers with inhibitive lateral connections in the output 

layer. One such architecture is shown in Fig. 2b. In the present work, the network 

was composed of eight input units and two output units (because there are two 

categories). The transmission in the network is described by: 
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2
xw i −=

i
MintWinningUni  (6) 

where wi is the ith vector of the weight matrix, x is the stimulus-vector and ||•||2 is 

the Euclidean distance (L2-Norm). The learning rule was applied only to the 

winning unit. The weight update is described by: 

[ ] [ ] [ ])( 11 −− −+= kikiki wxww η  (7)

where wi[k] is the weight vector of the winning unit (i) at the kth trial, x is the 

stimulus, and η is a learning parameter. The second term represents the weight 

update. In the present, η was set to 0.01. 

Simulations  

The aim of the present work was to test the effect of a change in the environmental 

distribution on the behavior of unsupervised ANNs. To fully apprehend the problem of 

environmental biases, environmental distributions were chosen in order to vary the 

frequency of exemplars and categories independently. This was accomplished by using 

four different distributions which are shown in Fig. 3. In the first condition, the networks 

were trained using a uniform distribution (Fig. 3a): As a result, all categories and all 

exemplars were equally likely (control condition). The second condition used a bimodal 

distribution composed of two Gaussians with respective means of 2 and 5, and a common 

standard deviation of 0.5 (Fig. 3b). Therefore, both categories appeared as often but 

exemplar two (from category “A”) and exemplar five (from category “B”) were about 

four times more likely than the others. In the third condition, the networks were trained 

using a step distribution (Fig. 3c): items from category “A” were more probable than 

those from category “B”. More precisely, the ratio of “A” to “B” stimuli was 5:4. Within 
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each category, all exemplars were equiprobable. Finally, the fourth condition used an 

exponential distribution with a mean of 3 (Fig. 3d). Therefore, category “A” was more 

probable than “B” (about 3:1), and exemplar one was more probable than exemplar two, 

which was more probable than three, etc. 

Insert Fig. 3 about here 

A different competitive network was trained in each condition for 500 trials. After 

this training, each network was tested by presenting 500 random vectors composed of 

real numbers from the interval [-1, 1]. The aim of this Monte Carlo simulation was to 

estimate the content of the learned categories by counting the number of random vectors 

classified in each category. The same simulation methodology was used to train and test 

the RAM. Simulations and random number generation were conducted using 

Mathematica (Wolfram, 1996). 

Results 

Training  

First, both networks were able to recall perfectly every training exemplar in each 

condition, which indicated that they were properly trained. Second, because the 

categories were orthogonal, the eigenvectors of the weight matrices were the energy 

minima in the RAMs (Diamantaras & Kung, 1996). Therefore, we proceeded with a 

spectral decomposition. Fig. 4 shows the eigenvalues of the weight matrices in decreasing 

order. As seen, the amplitude of the eigenvalues varied as a function of the frequency of 

the categories. For example, panel (a) and (b) show conditions in which both categories 

were equally likely (Uniform and Bimodal, respectively): hence, both developed 
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eigenvalues were almost identical (mean difference = 1.89 x 10-3). However, in 

conditions where category “A” was more likely than category “B”, the eigenvalue 

associated with category “A” was bigger than the eigenvalue associated with category 

“B”. For instance, in the condition where the RAM was trained with the step distribution 

(panel c), the difference between the first and the second eigenvalue was three times 

bigger than those from conditions in which the categories were equally likely; this 

difference became twelve times bigger when trained with the exponential distribution 

(panel d). 

Insert Fig. 4 about here 

 Fig. 5 shows the eigenvectors corresponding to each category developed by the 

RAMs (after convergence). As seen, the position of the eigenvectors was affected by the 

relative intra-categorical frequency of exemplars. For instance, Fig. 5 shows that the 

eigenvectors from the uniform condition (a) were identical to those from the step 

condition (c). However, eigenvectors from the uniform condition differed from those 

from the bimodal (b) and exponential (d) conditions. This difference reflects a rotation of 

the eigenvectors toward stimuli that were more frequent. The bimodal condition clearly 

illustrates this phenomenon (panel b). Comparing its eigenvectors with the stimuli (Fig. 

1) brings forward the similarity between the “A” eigenvector and stimulus two 

(remember that stimulus two was four times more likely than other “A”s). The same 

observation is made when comparing the “B” eigenvector with stimulus five. Because 

showing stimulus one more frequently saturated the first eigenvector, the exponential 

condition (panel d) reflects the same phenomenon in a less obvious way. 

Insert Fig. 5 about here 
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 In the introduction, it was asserted that competitive networks are maximizing the 

overlap of stimuli and weight vectors (Rumelhart & Zipser, 1986). Therefore, the learned 

categories should be apparent in the weight matrices. Fig. 6 shows these weights after 

saturation in a comparator2. As shown, weights from the first three panels were identical 

to panel (a) to (c) of Fig. 5. This similarity confirms that both networks learned the same 

categories in these three conditions (Uniform, Bimodal, and Step). However, there was a 

difference in the exponential condition between the RAM (Fig. 5d) and the competitive 

network (Fig. 6d). As seen, the competitive network’s weights were not moved towards 

the first and fourth stimuli from category “A” and “B” respectively. Yet, this rotation 

towards more frequent stimuli was present in the bimodal condition (Fig. 6b). This 

difference reflects a certain coarseness of the network according to changes in frequency 

of exemplars: in the bimodal case, exemplar two and five were four times more likely 

than the remaining; in the exponential case, this ratio was only 7:5 between the first and 

second stimuli, and 2:1 between the first and third stimuli (similar differences were 

computed between stimulus four and five and stimulus four and six). These smaller odd 

ratios were insufficient to attract the weight vectors toward the first and fourth stimuli.  

Insert Fig. 6 about here 

Test 

Table 1 shows classification results of random vectors in all conditions for each network. 

As seen, the RAMs’ density estimations did not significantly differed from the training 

distributions according to a χ2 test. However, the competitive networks were unable to 

estimate the correct densities in both the step and exponential environments. More 

specifically, the competitive networks’ density estimations never differed from a uniform 
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environment (all χ2(1) < 6.728, p > .001). On the other hand, density estimations of the 

RAMs in the step and exponential conditions significantly differed from a uniform 

distribution (both χ2(1) > 23.13, p < .001). 

Insert Table 1 about here 

Discussion 

The aim of this set of simulations was to test the effect of the environmental distribution 

on the simplest representatives of two important classes of unsupervised ANNs: 

competitive networks (e.g. Carpenter & Grossberg, 1987; Grossberg, 1976a, 1976b; 

Rumelhart & Zipser, 1986) and RAMs (e.g. Anderson et al., 1977; Bégin & Proulx, 1996; 

Chartier & Proulx, 2005; Hopfield, 1982). Our simulations used various types of random-

generating functions in order to test the effect of the frequency of exemplars and 

categories in simple, orthonormal environments. Tests involving random vectors have 

shown that only the RAMs’ performances were affected by this manipulation. Moreover, 

the effects of exemplar and category frequency were independent: the former was 

reflected by the position of the eigenvectors of the weight matrices and the latter by the 

magnitude of the eigenvalues. Hence, a more frequent category at training resulted in 

more random vectors being categorized as members of that category, which is consistent 

with empirical data in category learning (Kruschke, 1996; Rips, 1989). Also, in order to 

better model the possible discrepancy between objective frequencies and human 

estimated frequencies, Anderson and his colleagues (1977) have shown that adding a 

memory efficiency parameter in the learning rule (first term of Eq. 5) allows for (under / 

over) estimation of category frequency. Concerning the effect of stimulus frequency, a 
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change in the relative frequency of the exemplars was reflected by a displacement of the 

attractors that determined which random vectors were classified in which category. This 

observation is in line with Anderson’s explanation of the stimulus frequency effect 

(Erickson & Kruschke, 1998; Nosofsky, 1988, 1991; Nosofsky & Palmeri, 1997; Shin & 

Nosofsky, 1992): the center of the category is moved toward biased exemplars 

(Anderson, 1991). This effect was also present in the position of the weight vectors of the 

competitive networks. Nevertheless, the environmental biases did not affect these 

networks’ performance: random vectors were categorized as members of both categories 

half of the time. Clearly, the competitive networks’ results did not reflect environmental 

biases, thus revealing their incapacity to model human categorization data in tasks where 

category frequency is varied. 

Simulation set 2: Increased complexity 

The aim of the present simulation set was to test the behavior of unsupervised neural 

networks in more complex environments, which included more stimuli pertaining to more 

than two categories3. The patterns were highly dimensional and correlated. 

Stimuli  

The stimuli used for the simulations were thirty hand-written digits drawn using a 16 × 

16 grid (shown in Fig. 7). Each stimulus was coded as a bipolar 256-units vector. These 

stimuli were chosen because they represent a wide range of correlations. The within-

category correlations varied between 0.74 and 0.95 while the between-category 

correlations varied between 0.22 and 0.42. 

Insert Fig. 7 about here 
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Models  

To correctly classify the stimuli shown in Fig. 7, a novelty detector must be added to the 

RAM and the competitive network. The notion of novelty detection (or vigilance) was 

introduced in Grossberg (1976a), and further developed in Carpenter and Grossberg 

(1987), to solve the stability / plasticity dilemma: when new stimuli are introduced after 

learning has started, the system must be able to learn them without forgetting what is 

already known. Grossberg proposed to achieve this by adding a vigilance module, which 

controls the granularity of the categorization. Hence, if the new stimuli are sufficiently 

different from existing classes, a new category is created, leaving the previous knowledge 

untouched. The size of the classes is defined by the value given to the vigilance 

parameter, a small value resulting in few categories while a high value in rote learning.  

In the present case, the two ANNs used were state-of-the-art representatives of the 

competitive networks’ and RAMs’ families which can classify bipolar vectors. As a 

result, ART1 (Carpenter & Grossberg, 1987) was used to represent the competitive 

network’s family and NDRAM (Chartier, 2004; Chartier & Proulx, 2005) was used to 

represent the RAMs’. 

NDRAM 

NDRAM is a non-linear RAM which can categorize grey-level correlated patterns 

with few spurious states (Chartier & Proulx, 2005). The ability to learn continuous 

stimuli is new in RAMs and stems from the non-linearity of the transfer function 

and its inclusion into the learning rule (for details, see Appendix A). The small 

quantity of spurious states greatly improves the network’s performance and 

follows from the learning rule, which ensures that NDRAM’s eigenvalues are 
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converging toward an unequal spectrum. However, in NDRAM, there are as many 

memory traces as there are distinct stimuli. Hence, a vigilance parameter for 

novelty detection must be added to achieve categorization (Chartier, 2004; 

Chartier & Proulx, 1999).  

NDRAM’s architecture is shown in Fig. 8a. As seen, the main structure is 

that of a usual associative memory, but an external novelty detector was added. 

This module computes the correlation between the input and the output. If this 

correlation is higher than a predetermined criterion (ρ), the module returns a 

balanced average of the input and the output ( x ) for learning. Otherwise, the input 

is used for learning ( x  = x[0]). 

Insert Fig. 8 about here 

In the present case, the network was composed of 256 units (N). Following 

Chartier and his colleagues’ analyses (Chartier, 2004; Chartier & Proulx, 2005), 

η and δ were set to 0.001 and 0.4 (which ensures that NDRAM’s attractors are 

steady), ζ and µ were set to 0.9999 and 0.01, and the vigilance parameter (ρ) and 

number of iterations (p) were set to 0.7 and 10 respectively. 

ART1 

ART1 (Carpenter & Grossberg, 1987) is a biologically inspired competitive 

network based on two main ideas: resonance (Grossberg, 1976b) and novelty 

detection (vigilance; Grossberg, 1976a). Resonance is a state of equilibrium 

reached when an output is able to reconstruct the input that generated it. An ART1 

network only learns when this equilibrium is reached. The second idea is a fuzzy 

criterion that permits resonance to take place: instead of requiring that the output’s 
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reconstruction be identical to the input to qualify as an equilibrium state, a 

predetermined level of similarity must be reached. If the reconstruction of the 

output is sufficiently similar to the input, the stimulus is a member of the output’s 

category. Otherwise, the input is a member of another category (for details, see 

Appendix B).  

The architecture of ART1 is shown in Fig. 8b. As shown, there are two 

layers of units and the network is composed of two distinct sets of weights: one 

from F1 to F2 (Wbu, for bottom-up) and another from F2 to F1 (Wtd, for top-

down). The right part of the network is the novelty detector.  

In the present case, the input layer (F1) was composed of 256 units and the 

output layer (F2) was composed of three units (because there are three categories). 

Following Freeman (1994), a = 1, b = 1.5, c = 5 and d = 0.9. It is noted that these 

parameter values satisfy all constraints listed in Carpenter & Grossberg (1987). To 

further meet these constraints, L was set to 45 (because of the high dimensionality 

of the network) and ρ was set to 0.4. 

Simulations  

As in the first simulation set, four environments were chosen in order to manipulate 

independently the biases of stimuli and categories. The chosen distributions are shown in 

Fig. 9. Again, the control condition was described by a uniform distribution, this time 

ranging from 1 to 30 (panel a). The second condition was a multimodal distribution with 

three modes (stimuli 5, 15, and 25). This environment was created by a mixture of three 

Gaussian distributions with means corresponding to modes and a common standard 

deviation of two (panel b). The step distribution is shown in Fig. 9c. In this condition, the 
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ratio of the first category (“7”) to the second (“0”) was 7:5, and the one from first to third 

(“1”) was 7:4. Finally, panel (d) shows an exponential distribution with a mean of 25. In 

this condition, the ratio of the first category to the second was 3:2, and the ratio from the 

first to third was 9:4. As in the first simulations, the uniform distribution constituted an 

unbiased environment, the multimodal distribution formed a world in which every 

category was equally likely but some exemplars were biased, the step distribution 

resulted in biased categories while keeping within-category exemplar frequency constant, 

and the exponential condition resulted in biased categories and exemplars. 

Insert Fig. 9 about here 

A different ART1 was trained in each condition for 10 000 trials. After this 

training, each network was tested with 500 random vectors composed of real numbers 

from the interval [-1, 1] to evaluate the content of the learned categories. The same 

simulation methodology was used to train and test NDRAM. Simulations and random 

number generation were conducted using Mathematica (Wolfram, 1996). 

Results 

Training  

As in the first simulation set, both networks were able to recall perfectly every training 

exemplar in each condition, indicating that the learning phase was successful. In the first 

simulation set, the presence of categorical biases was hinted by the eigenvalue spectrum 

of the RAMs’ weight matrices. Therefore, a spectral decomposition was performed on 

NDRAM’s weight matrices. Fig. 10 shows the eigenvalue spectrum developed in each 

condition. Unlike the first simulation set, the eigenvalue spectrum was not affected by the 

manipulations. The between-condition differences were of the order of 1 × 10-5. 
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However, in the present case, the categories were composed of correlated patterns: as a 

result, categories were not equivalent with eigenvectors but with converged linear 

combinations of the eigenvectors. Therefore, each eigenvalue cannot be directly 

interpreted as associated to a given category; categorical biases might still be present in 

the test phase. 

Insert Fig. 10 about here 

 In the first simulation set, the eigenvectors were drawn toward biased exemplars. 

Chartier (2004) has conjectured that NDRAM’s attractors are the theoretical means of the 

categories. Therefore, this effect should still be present in NDRAM’s categories. Fig. 11 

shows NDRAM’s categories in each condition. As predicted by Chartier’s previous work, 

the attractors corresponding to each category were the theoretical means and were easily 

identifiable. However, because the within-category correlations were high (mean within-

category r = 0.87), the correlations between the theoretical means of the conditions were 

also high (mean r > 0.9). Therefore, this attractor shift, while present, is difficult to 

appreciate visually. 

Insert Fig. 11 about here 

 In the first simulation set, it was shown that the competitive networks’ weights are 

affected by stimulus frequency (Fig. 6). However, Eq. B4 (from Appendix B) suggests 

that Wbu is equal to the intersection of the stimuli in a given category (not the mean, as in 

the first set of simulations): hence, the effect of exemplar frequency is unlikely to be 

present. The developed categories are shown in Fig. 12. As seen, the categories are easily 

identifiable and no grey-levels were present: each entry in the weight vector was either 
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equal to 
∑ ′+−

j
jL

L
1F1

 or zero. Also, the categories did not seem to be affected by the 

frequency of exemplars.  

Insert Fig. 12 about here 

Test  

Table 2 shows the classification results of random vectors in each condition for all 

networks. As seen, NDRAM (Chartier, 2004; Chartier & Proulx, 2005) displayed the 

same pattern of results as the RAM in the first simulation set: its density estimations did 

not significantly differed from the training distributions according to a χ2 test. However, 

like the competitive network in the first simulation set, ART1 (Carpenter & Grossberg, 

1987) was unable to estimate the correct densities. More surprisingly, ART1 did not 

display uniform priors in every condition (all χ2(2) > 367.4, p > .001): it was biased 

toward the “1” category, even in conditions where it was the less frequent. This bias is 

explained by a preference of the network for categories in which the intersection of the 

members has more position filled with non-null values. More precisely, the expectation 

of the activation of a given unit is4: 
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where N is the cardinality of the stimulus, n is the number of positions containing a non-

null value in the random vector, and m is the number of non-null values in the weight 

vector. This function is non-linear and increasing for all m (further details are given in 
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Appendix B). In the present case, m = {59, 50, 32} for categories “1”, “0” and “7” 

respectively. Therefore, in addition to being insensitive to priors, ART1 is biased toward 

categories in which members are sharing more features. This bias is not viable, neither in 

psychological models nor in machine learning. 

Insert Table 2 about here 

Discussion 

The aim of this set of simulations was to test the effect of the environmental distribution 

on sophisticated representatives of two important classes of unsupervised ANNs: 

competitive networks (e.g. Carpenter & Grossberg, 1987; Grossberg, 1976a; Grossberg, 

1976b; Rumelhart & Zipser, 1986) and RAMs (e.g. Anderson et al., 1977; Bégin & 

Proulx, 1996; Chartier & Proulx, 2005; Hopfield, 1982). The simulations used various 

types of random-generating functions in order to test the effect of the frequency of 

exemplars and categories in environments containing more than two categories composed 

of correlated patterns. Tests involving random vectors as stimuli have shown that only 

NDRAM’s (Chartier, 2004; Chartier & Proulx, 2005) performance was affected by this 

manipulation. Moreover, the exemplar frequency effect was independent from the 

category frequency effect. The former was reflected by the position of the attractors, 

which were equal to the theoretical means of the categories and the latter was seen in the 

results of the Monte Carlo simulations (Table 2): A more frequent category at training 

resulted in more random vectors categorized as members of that category, which is in line 

with empirical data (Kruschke, 1996; Rips, 1989). A change in the relative frequency of 

the exemplar was reflected by a displacement of the attractors that determined which 
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random vectors are classified in which categories, again consistent with human data 

(Erickson & Kruschke, 1998; Nosofsky, 1988, 1991; Nosofsky & Palmeri, 1997; Shin & 

Nosofsky, 1992). Neither of these effects was present in ART1’s (Carpenter & 

Grossberg, 1987) weight matrices. Moreover, ART1 is biased toward categories in which 

the cardinality of the set, composed of the intersection of all the category members, is the 

highest. This bias is not desirable in a model because there is no a priori reason to believe 

that categories composed of members that strongly overlap should be privileged. On the 

contrary, human data suggests that sparse categories elicit the inclusion of more distorted 

patterns (Posner & Keele, 1968). 

General Discussion 

The aim of this paper was to test the “ignorance” (in the Laplacian sense) of two 

important classes of unsupervised ANNs: competitive networks (e.g. Carpenter & 

Grossberg, 1987; Grossberg, 1976a; Grossberg, 1976b; Rumelhart & Zipser, 1986) and 

RAMs (e.g. Anderson et al., 1977; Bégin & Proulx, 1996; Chartier & Proulx, 2005; 

Hopfield, 1982). The networks’ “ignorance” was assessed by throwing random vectors in 

their weight space developed after training. Two simulation sets were used to train simple 

and complex networks in different environments, which varied the frequency of 

exemplars and categories independently. 

First, all the simulations results’ showed that the networks were able to correctly 

recall the training sets. Also, the categories were all visible in the weight matrices, which 

confirmed that the categories had been correctly learned. However, while RAMs were 

able to correctly estimate the training densities, competitive networks were unable to do 

so. The problem with hard competitive learners is their decision function (Max or Min). 
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For instance, the output layer of ART1 (Carpenter & Grossberg, 1987) in the second 

simulation set was three-dimensional. After a stimulus passes through the weight matrix, 

all three output units are activated, which can be represented by a vector in the three-

dimensional output space. However, the output function chooses the maximally activated 

value and the remaining are shut down. Therefore, the output space is compressed into a 

one-dimensional space which is the dominating axis of the three-dimensional output 

space. All other information is lost, including rotations and dilatations of the weight 

vectors (due to exemplar frequencies) in the other directions.  

These decision functions (Min, Max) are at the core of hard competitive learning 

and are a necessity for this kind of learning. This flaw thus affects the whole class of hard 

competitive learners, and frequency effects present in human data (Erickson & Kruschke, 

1998; Kruschke, 1996; Nosofsky, 1988, 1991; Nosofsky & Palmeri, 1997; Rips, 1989; 

Shin & Nosofsky, 1992) cannot be explained unless the competition criterion is released 

(for a complete analysis of soft competitive learning, see Nowlan, 1989). 

As a result, these findings have very important implications for ANN’s modeling. 

First, because these tests were conducted on “generic” and sophisticated examples of 

competitive learners and RAMs, the properties brought forward by the simulations can be 

generalized to every ANNs based on those same axioms (hard competition vs. 

generalized Hebbian learning). Therefore, this work highlights an important flaw of hard 

competitive networks: they are unable to use the information present in the environment 

to optimize their behavior. This shortcoming limits the performance, and thus the 

applicability, of hard competitive networks in computer science. Moreover, it questions 

these models’ adequacy as an explanation of human behavior.  
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On the other hand, RAMs may be useful models in computer science as well as 

psychology (Anderson et al., 1977; Bégin & Proulx, 1996; Chartier & Proulx, 2005). 

Their pattern completion capabilities as well as their ability to optimize recall by using 

environmental biases widen their field of application. However, in order to fully asses 

their usefulness, further study is needed with grey-level patterns (Chartier, 2004; Chartier 

& Proulx, 2005) and heteroassociative, BAM learning (Chartier & Boukadoum, in press; 

Kosko, 1988). 
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Footnotes

                                                 
1 In the remaining, hard competitive learning is simply referred as competitive learning 
unless otherwise specified. 
2 Cichocki and Unbehauen (1993) defined the comparator as: 
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3 It is noted that there exist a qualitative difference between worlds composed of two 
categories and worlds composed of more than two. In the former case, a single category 
needs to be learned and the other can be defined as its complement. However, when more 
than two categories are present, increasing their number results in a quantitative 
difference. 
4 In the present, we adopt the standard convention that if i < 0, n < 0 or n – i < 0, 
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(Ross, 1998). 
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Appendix A 

This Appendix presents the technical details of NDRAM (Chartier & Proulx, 2005) augmented 

with a novelty detector (Chartier, 2004). Its architecture is shown in Fig. 8a. This simplified 

architecture follows from NDRAM’s transmission rule, in whichφ  (from Eq. 3) was set to zero. 

The resulting transmission rule is described by: 

 [ ] [ ])( t1t xx Wg=+  (A1) 

where W is the weight matrix and x[t] is the stimulus at time t. Most of the network’s new 

behaviors arise from the non-linearity of the transfer function, which is described by: 

 
(A2) 

 where a is the activation of a given unit and 0 < δ < 2 is a general transmission parameter 

(Chartier & Proulx, 2005). The learning rule is a simple hebbian function (Kohonen, 1972) with a 

correction term (anti-hebbian; Bégin & Proulx, 1996; Chartier & Proulx, 2005; Palm, 1982; 

Proulx & Hélie, 2005): 
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where the second term is the weight change, η is a learning parameter (
N)21(2
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p is the number of iterations in the network prior to learning, 0 < < ζ ≤ 1 is a general memory 

efficiency parameter, and x  is the output of the vigilance module. 

The vigilance module is mathematically described by (Chartier, 2004): 
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where x[0] is the stimulus, µ is a parameter which quantifies the effect of the initial stimulus in x , 
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and z is defined by: 
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where ρ is the vigilance parameter. 
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Appendix B 

Model 

This part of the Appendix presents the equations defining the ART1 model. More details can be 

found in (Carpenter & Grossberg, 1987). The architecture of ART1 is shown in Fig. 8b. The 

output of the first layer (F1) is equal to the following: 
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where x is the chosen stimulus, and a, b, c are free parameters. This output is sent to the second 

layer (F2): 
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where Wbu is the bottom-up weight matrix from F1 to F2. The output vector (F2) is sent back to 

the input layer for comparison with F1. The reconstruction of the input is: 
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where Wtd is the top-down weight matrix connecting F2 to F1 and d is a free parameter. If 

(||F1’||2 / ||F1||2)1/2 > ρ, the input is recognized as a member of the output’s category and the 

network is in a state of resonance. Else, the second highest output of Eq. B2 is set to one and the 

transmission is repeated until resonance is achieved. If the input is rejected by all known 

categories, resonance occurs with a new output unit. 

 Once in a resonant state, ART1 updates its connections by the following: 
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where L is a free parameter and i is the position of the winning unit. 

Expectancy of ART1’s activation 

The problem of presenting random vectors to an ART1 architecture (Carpenter & Grossberg, 

1987) is akin to the well-known urn problem in probability (Ross, 1998). In the urn problem, n 

draws are made in an urn containing N balls, m of which are white and the remaining (N - m) are 

black. Let’s define X as the number of white balls that are drawn. In this case, X is 

hypergeometric, which is described by: 
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In the present simulations, the cardinality of the stimulus vector is the number of balls in 

the urn (N), the number of draws is equivalent to the number of positions in the random vector 

containing non-null values (n), and the number of white balls is the number of non-null values in 

the weight vector (m). Because Eq. B1 makes the random vectors binary, n is binomial with 

parameters (N, 1/2). Therefore, the expectation of the activation of a given unit is described by: 
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In the second simulation set, L = 45 and N = 256. Eq. B6 shows that the expectation of the 

activation of an output unit is a non-linear positive monotonic function of m. Since m = {59, 50, 
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32} for category “1”, “0”, and “7” respectively, the expectation of the activation of the “1” 

category is higher than the expectation of the “0” category, which is higher than the expectation 

of the “7” category. Because ART1 is a competitive learner, the maximal activation is always 

chosen, which explain the network’s bias. 
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Table 1.        
Classification of the random vectors          
 RAMs Competitive Networks 
 "A"s "B"s χ² "A"s "B"s χ² 
Uniform 153 (0.46) 178 (0.54) 0.593 237 (0.47) 263 (0.53) 0.512 
Bimodal 220 (0.44) 276 (0.56) 2.915 246 (0.49) 254 (0.51) 0.200 
Step 195 (0.64) 110 (0.36) 7.053 238 (0.48) 262 (0.52) 15.75* 
Exponential 357 (0.72) 142 (0.28) 3.085  221 (0.44) 279 (0.56) 222.4* 
Note. 500 random vectors were tested in each cell. Vectors not appearing in the 
RAMs' conditions stabilized in spurious states. Numbers in parenthesis represent 
proportions. * indicate results that significantly differed from their training 
distribution according to a χ²(1), α = .001. The critical value was 10.83. 
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Figure captions 

Fig. 1. Stimuli used in the first simulation set. All stimuli in the first row (category “A”) are 

orthogonal to all stimuli in the second (category “B”). 

Fig. 2. (a) Block diagram representing the architecture of the RAM. W is the weight matrix 

representing a simple linear autoassociator, x[t] is the state of the network at time t, and the grey 

square is a delay unit. (b) Feedforward architecture of the competitive network. The dashed arrow 

represents inhibitive connections (with no adjustable weights). 

Fig. 3. Distributions used as environments in the first set of simulations. The first three stimuli 

were from category “A” and the remaining from category “B” (see Fig. 1). (a) Condition in 

which every exemplars and every categories were equally likely. (b) Condition in which all 

categories were equiprobable but some exemplars were biased. (c) Condition in which the first 

category was biased but all exemplars in a category were equiprobable. (d) Condition in which 

the first category was biased, and the probability associated to each stimulus was inversely 

related to its position. 

Fig. 4. Eigenvalues of the weight matrices developed by the RAMs after training. In each panel, 

the first eigenvalue was associated to “A”s and the second to “B”s. Panels represent the same 

conditions as in Fig. 3. 

Fig. 5. Eigenvectors of the weight matrices developed by the RAMs (after convergence). In each 

panel, the top eigenvector represent “A”s and the bottom “B”s. Panels represent the same 

conditions as in Fig. 3. 

Fig. 6. Weight matrices developed by the competitive networks. Panels represent the same 

categories and conditions as in Fig. 5. 

Fig. 7. Stimuli used in the second simulation set. The first row shows handwritten “7”s, the 

second row handwritten “0”s, and the third row “1”s. The stimuli were coded as 256-units bipolar 
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vectors (±1). For reference, stimuli were numbered from left to right and from top to bottom. 

Fig. 8. (a) Architecture of NDRAM. (b) Architecture of ART1. The circles represent gating 

mechanisms and the rectangles layers of neurons. The left part of ART1 is the network per se and 

the right part is the orientating subsystem (novelty detector). 

Fig. 9. Distributions used as environments in the second set of simulations. The first ten stimuli 

were “7”s, the following ten were “0”s, and the remaining were “1”s. The panels have the same 

properties as in Fig. 3. 

Fig. 10. First twenty eigenvalues of the weight matrices developed by NDRAM after training. 

Panels represent the same conditions as in Fig. 9. 

Fig. 11. Attractors developed by NDRAM. Panels represent the same conditions as in Fig. 9. 

Fig. 12. Weight matrices developed by ART1 (Wbu). In each panel, the leftmost weight vector 

was associated to the first output unit, the middle weight vector was associated to the second unit, 

and the rightmost to the third output unit. Panels represent the same conditions as in Fig. 9.
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