
 

 

 

  

Abstract—Some mainstream psychologists have criticized 

computational cognitive architectures on the issue of model 

complexity and parameter tweaking (i.e., the likelihood that 

cognitive architectures can explain any results and their 

opposites). This paper tries to address these criticisms by 

tackling the issue of model complexity in cognitive 

architectures. Here, we start with a well-established cognitive 

architecture, CLARION, and extract its core theory to explain 

a wide range of data. The resulting minimal model was used to 

provide parameter-free principled explanations for several 

psychological “laws” of uncertain reasoning and decision-

making. This paper is concluded by a discussion of the 

implication of parameter-free modeling in cognitive science and 

psychology. 

I. INTRODUCTION 

ognitive theories are often underdetermined by data 

[1]. As such, different theories, with very little in 

common, can be used to explain the very same 

phenomena observed in experimental psychology [2]. 

According to Newell, this problem can be resolved by 

adding constraints to psychological theories. The most 

intuitive approach to adding constraints to any scientific 

theory is to collect more data. Newell [1] argued that more 

data could be used to constraint a theory if the theory was 

designed to explain a wider range of phenomena (both from 

the same and other domains). So far such ‘integrative’ 

theories have taken the form of cognitive architectures, and 

some of them have been very successful at explaining a wide 

range of data (e.g., [3]-[4]). However, on the down side, 

cognitive architectures tend to be complex, including 

multiple modules and many free parameters (in their 

computational implementations). 

 The problem of complexity has been recognized and 

acknowledged by Sun [5], who argued that a cognitive 

architecture should be minimal. Minimality in cognitive 

architectures needs to be attained in two senses. First, a 

cognitive architecture should have only minimal initial 

structures (i.e., modules). Second, the internal structures and 

representations should also be kept to a minimum while 
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capturing human data. In this article, we study how the 

CLARION cognitive architecture [4], [6]-[8] can be 

minimized, which leads to extracting its core theory.  

The remainder of this article is organized as follow. First, 

Section II introduces a core theory extracted from the 

CLARION cognitive architecture. Second, the core theory 

extracted in Section II is used to provide principled (and 

almost parameter-free) explanations of decision-making 

phenomena (Section III) and biases in medical diagnoses 

(Section IV). This article concludes with a short discussion 

of the implications of research on minimal cognitive 

architectures. 

II. THE CLARION COGNITIVE ARCHITECTURE 

CLARION is a cognitive architecture that is, in part, based 

on two basic assumptions: representational differences and 

learning differences of two different types of knowledge: 

implicit versus explicit [4], [6]-[8]. These two types of 

knowledge differ in terms of accessibility and attentional 

requirement. The top level of CLARION (as in Fig. 1) 

contains explicit knowledge (easily accessible, but requiring 

more attentional resources) whereas the bottom level 

contains implicit knowledge (harder to access, but mostly 

automatic). Because knowledge in the top and bottom levels 

is different, Sun and his colleagues [6]-[8] have shown that it 

is justified to integrate the results of top- and bottom-level 

processing in order to capture the interaction of implicit and 

explicit processing in humans.  

CLARION is further divided into two different 

subsystems: the Action-Centered Subsystem and the Non-

Action-Centered Subsystem. The Action-Centered 

Subsystem (with both levels) contains procedural knowledge 

concerning actions and procedures (i.e., it serves as the long-

term procedural memory), while the Non-Action-Centered 

Subsystem (with both levels) contains declarative knowledge 

(i.e., it serves as the long-term declarative memory, both 

semantic and episodic; [8]). The Non-Action-Centered 

Subsystem is controlled by the Action-Centered Subsystem. 

The Non-Action-Centered Subsystem is also used for various 

types of reasoning [6], [9]. 

The second assumption in CLARION concerns the 

existence of different learning processes in the top and 

bottom levels [7]-[8]. In the bottom level, implicit 

associations are learned through gradual trial-and-error 

learning. In contrast, learning of explicit rules in the top level 

is often “one-shot” and represents the abrupt availability of 

explicit knowledge following “explicitation” of implicit 

knowledge or new acquisition of linguistic (or otherwise 
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explicit) information. The inclusion of and the emphasis on 

bottom-up learning (i.e., the transformation of implicit 

knowledge into explicit knowledge) is, in part, what 

distinguishes CLARION from other cognitive models (for 

another example, see [10]). 

A. The Action-Centered Subsystem 

The Action-Centered Subsystem (ACS) is the main 

subsystem in CLARION [7]-[8]. In addition to filling the 

role of long-term procedural memory, the ACS is used to 

capture some executive functions (i.e., the control of some 

other subsystems). As such, the ACS receives all the inputs 

from the environment, and provides action 

recommendations. The description of the implementation of 

the ACS included in the present paper is conceptual, because 

technical formalities are not required to explain the range of 

phenomena accounted for in this paper. Readers interested in 

the technical aspects of the ACS are referred to [7]-[8]. 

1) Top Level: In the top level of the ACS (the Action Rule 

Store), explicit knowledge is represented using condition and 

action chunks. Condition chunks can be activated by the 

environment (e.g., a stimulus) or other CLARION 

subsystems (e.g., working memory). Action chunks can 

represent motor programs (i.e., a response) or queries to 

other CLARION subsystems. In particular, an action 

recommendation of the ACS can be used to query the Non-

Action-Centered Subsystem with a round of reasoning (as 

detailed later). In this case, the Non-Action-Centered 

Subsystem can return one or several chunks resulting from 

the round of reasoning, which can be used in the ACS as 

action recommendations or as conditions for computation at 

a future time step.  

Chunks returned by the Non-Action-Centered Subsystem 

are accompanied by their internal confidence levels (i.e., 

activations). The internal confidence level is for estimating 

the confidence in the answer returned to the ACS. This 

measure is important because the ACS does not have direct 

access to the processing that led to this chunk being returned. 

The ACS can use a threshold (i.e., ψ) on the internal 

confidence level to decide on accepting/rejecting the result 

of NACS processing. Also, the internal confidence level can 

be used to estimate confidence in a produced response. 

Both condition and action chunks are individually 

represented by single nodes in a connectionist network and 

have a clear conceptual meaning (i.e., localist 

representations). The chunks in the top level of the ACS are 

linked to implement rules of the form “Condition chunks” � 

“Action chunks”. These rules can be simply represented by 

connections weights, thus forming a linear connectionist 

network. These explicit procedural rules, and the chunks 

involved, can be learned bottom-up (via Rule-Extraction-

Refinement; [7]), by explicit hypothesis testing (via 

Independent Rule Learning), or be fixed (e.g., by 

experimental instructions; Fixed Rules). In all cases, top-

level rules are learned in a “one-shot” fashion [4]. 

2) Bottom Level: The bottom level of the ACS (Implicit 

Decision Networks) uses feature-based representations to 

capture implicit procedural knowledge. Each top-level chunk 

is represented by a set of features in the bottom level (i.e., 

distributed representations). The chunk features (in the 

bottom level) are connected to the chunks (in the top level) 

so that they are usually activated together through bottom-up 

activation (when the features are activated first) or top-down 

activation (when the chunks are activated first). 

The features of the condition and action chunks are 

connected in the bottom level using several specialized 

multilayer nonlinear connectionist networks. Each network 

can be thought of as a highly efficient routine (once properly 

trained) that can be used to accomplish a particular task. 

Training of the bottom-level networks is iterative and done 

using backpropagation implementing Q-learning [7]. 

B. The Non-Action-Centered Subsystem 

The Non-Action-Centered Subsystem (NACS) of 

CLARION is a slave-system used to capture the declarative 

(both semantic and episodic) long-term memory [4]. The 

inputs and outputs of this subsystem usually come from 

another subsystem in CLARION, namely the ACS. In 

Fig. 1. A high-level representation of CLARION. 

 



 

 

 

addition, the NACS is used to capture several forms of 

reasoning [6], [9]. Here, a technical description of the core 

processes of the NACS is provided below. (The reader 

interested in the complete description is referred to [4].) 

1) Top Level: In the top level of the NACS (the General 

Knowledge Store), explicit knowledge is represented by 

chunks (as in the ACS top-level). However, unlike in the 

ACS, NACS chunks are not divided into condition and 

action chunks: all chunks represent concepts that can be used 

as a condition or a conclusion in rule application. Each 

chunk can be activated by: (a) an ACS query, (b) its 

association with another chunk (via an associative rule), or 

(c) its similarity to another chunk (via a similarity measure). 

When a NACS chunk is activated by an ACS query, its 

activation is generally set to unity (i.e., sj
ACS

 = 1). However, 

the other two sources of activation can have smaller 

(positive) values. 

NACS chunks can be linked together to represent 

‘associative’ rules (similar to a semantic network). In the 

simplest case, by representing the associative rules using 

connection weights, the top level of the NACS can be 

represented by a linear connectionist network: 

 

s j

r = si

i

∑ × wij

r
 (1) 

where sj
r
 is the activation of chunk j following the 

application of an associative rule, si is the activation of 

chunk i, and wij
r
 is the strength of the associative rule 

between chunks i and j (by default, wij
r
 = 1/n, where n is the 

number of chunks in the condition of the associative rule).
1
 

The application of (1) is referred to here as rule-based 

reasoning [11]. 

NACS chunks also share a relationship through similarity, 

which enables reasoning by similarity. In CLARION, the 

activation of a chunk caused by its similarity to other chunks 

is termed similarity-based reasoning. More precisely,  

icc

s

j sss
ji
×= ~  (2) 

where sj
s
 is the activation of chunk j caused by its similarity 

to other chunks, sci~cj is the similarity from chunk i to chunk 

j, and si is the activation of chunk i. The similarity metric 

(sci~cj) is defined in the bottom level of the NACS and is 

detailed in the following subsection (see (6) below).  

Overall, the activation of each chunk in the top level of the 

NACS is equal to the maximum activation it receives from 

the three previously mentioned sources, i.e.: 

 

sj = Max(sj
ACS

, β1 × sj
r
, β2 × sj

s
) (3) 

 

where sj is the overall activation of chunk j, and β1 and β2 are 

scaling parameters quantifying the weights of rule-based and 

 
1 It should be noted that all rules fire in parallel in the NACS of 

CLARION. As such, a chunk can receive activation by more than one 

associative rules. In this case, the maximum rule-based activation is used. 

similarity-based reasoning respectively.
2
 By default, β1 = β2 

= 1. 

Regardless of the activation source, chunks that are 

inferred (activated) in the NACS may be sent to the ACS for 

consideration in action decision-making. Every chunk that is 

sent back to the ACS is accompanied by an internal 

confidence level (activation, as in (3)).  

When only one chunk is to be returned to the ACS, a 

chunk is stochastically selected using a Boltzmann 

distribution: 

P(chunk j) =
e

s j α

e
si α

i

∑
  (4) 

where P(chunk j) is the probability that chunk j is selected to 

be returned to the ACS, sj is the activation of chunk j (3), and 

α is a free parameter representing the degree of randomness 

(temperature). In cases where only one chunk is returned to 

the ACS, this normalized activation is used as the internal 

confidence level (instead of the ‘raw’ activation of (3)).  

In addition to the above-mentioned activation, each chunk 

has a base-level activation defined as: 

b j

c = ib j

c + c tl

−d

l=1

n

∑  (5) 

where bj
c
 is the base-level activation of chunk j, ibj

c
 is the 

initial base-level activation (by default, ibj
c
  = 0), c is the 

amplitude (by default, c = 2), d is the decay rate (by default, 

d = 0.5), and tl is the lth use of the chunk. This measure has 

an exponential decay and corresponds to the odds of needing 

chunk j based on past experiences [12]. When the base-level 

activation of a chunk falls below a “density” parameter (dc), 

the chunk is no longer available for reasoning (rule-based or 

similarity-based). In the NACS, base-level activations are 

used mostly for capturing forgetting (using the density 

parameter).
3
 

Like in the ACS, chunks in the NACS can be learned by 

explicitly encoding given information (using, e.g., Fixed 

Rules) and by explicitly encoding knowledge bottom-up 

from the bottom levels of CLARION (both from the ACS 

and the NACS; e.g., by using Rule-Extraction-Refinement). 

In addition, each item in working memory has probability p 

of being encoded in the NACS as a chunk at every time step 

(for details on working memory, see [4]). 

2) Bottom Level: As in the ACS, the bottom level of the 

NACS (i.e., the Associative Memory Networks) uses feature-

based representations to (often redundantly) encode the top-

level chunks with distributed representations [6]. The 

features are connected to the top-level chunks so that, when a 

chunk is activated, its corresponding bottom-level feature-

based representation (if exists) is also activated and vice-

 
2 It should be noted that, mathematically, β1 and β2 add a single degree 

of freedom to the model. However, separate free parameters were used here 

to facilitate the interpretation of the parameter values. 
3 Alternatively, the density parameter (dc) can be interpreted as a 

stopping criterion at which one stops searching for a chunk and assumes 

that it is not available in memory (i.e., forgotten). 



 

 

 

versa. Alternatively, any bottom-level feature in the NACS 

can be directly activated by an ACS query.  

The connections between top-level chunks and their 

feature-based representations allow for a natural computation 

of similarity (2): 

sci ~c j
=

nci ∩c j

f nc j
( )

 (6) 

where ncj represents the number features in chunk j, nci∩cj is 

the feature overlap between chunks i and j, and f(x) is a 

slightly super-linear positive function (by default, f(x) = x
1.1

). 

Thus, similarity-based reasoning in CLARION is naturally 

accomplished using (a) top-down activation by chunks of 

their feature-based representations, (b) calculation of feature 

overlap between any two chunks (6), and (c) bottom-up 

activation of the top-level chunks (2). 

One important form of similarity-based reasoning is 

inheritance-based inference. In CLARION, this is done 

using the reverse containment principle [11]. According to 

the reverse containment principle, if chunk i represents a 

category that is a superset of the category represented by 

chunk j, all the (bottom-level) features of chunk i are 

included in the (bottom-level) feature-based description of 

chunk j (i.e., nci∩cj = nci). For instance, chunk i could 

represent the category ‘bird’ while chunk j could represent 

the category ‘sparrow’. In this case, the feature-based 

description of ‘sparrow’ would include the feature-based 

description of ‘bird’ (plus additional features unique to 

sparrows). The reverse containment principle allows for the 

emulation of a hierarchy of concepts (in the ideal case; [11]). 

III. DECISION-MAKING 

Decision-making in psychology is concerned with choices 

and preferences. Preferences in decision-making have been 

modeled very early in psychology and economics (e.g., 

[13]). When only two choices are available, important 

phenomena from the psychological literature include strong 

stochastic transitivity, independence of irrelevant 

alternatives, and regularity in binary choices (as reviewed in 

[14]). When more than two choices are available, the main 

phenomena observed are the similarity effect, the attraction 

effect, the compromise effect, and the complex interactions 

between these effects (as reviewed in [15]).  

Throughout the years, several models of decision-making 

have been proposed (e.g., elimination by aspect, Thurstone 

preferential model, additive utility models, etc; for a review, 

see [16]). While these models usually have the desirable 

property of being amenable to analytical solutions, they 

cannot account for all the afore-mentioned effects 

simultaneously. To our knowledge, the only exception is 

decision field theory (DFT), which can account 

simultaneously for all the afore-mentioned phenomena, is 

amenable to analytical solution, and can be captured by a 

connectionist model [16]. CLARION embodies such a model 

in its NACS. 

A. Capturing and Further Enhancing Decision Field 

Theory within CLARION 

We now examine the role of decision field theory (DFT) 

in the CLARION cognitive architecture. The reader not 

familiar with DFT and/or its terminology is referred to the 

Appendix for a summary description. First, decision-making 

is carried out in the CLARION NACS [4]. Because all the 

intermediate results of DFT are numerical and fuzzy, DFT is 

likely to be mainly carried out in the bottom level of the 

NACS. In addition, the dynamic in DFT is driven mainly by 

similarity-based inhibition (matrix S in the Appendix), which 

is also naturally carried out in the bottom level of the NACS. 

Similar to the ACS, the bottom level of the NACS is 

composed of several specialized networks (e.g., 

backpropagation networks). Hence, a special module in the 

bottom level of the NACS of CLARION, devoted to such 

decision-making, can include a connectionist network 

implementing DFT (as proposed by [15]).
4
  

Before describing the network implementation, two points 

need to be emphasized. First, including a DFT network in the 

bottom level of the NACS does not increase the number of 

free parameters in CLARION, and only one free parameter is 

varied to explain the decision-making phenomena (i.e., ψ, 

the threshold on the internal confidence level). Second, each 

option from the DFT network is redundantly represented as a 

chunk in the top level of the NACS, and the activations of 

the option chunks are equal to the outputs from the fourth 

layer of the DFT network (i.e., the preferences of the 

options; as detailed next).  

B. A Connectionist Implementation of Decision Field 

Theory 

A connectionist network implementing decision field 

theory (DFT) within the bottom-level NACS of CLARION is 

presented in Fig. 2. As can be seen, the matrix formulation of 

DFT (as presented in the Appendix) allows for a natural 

representation in a four-layer connectionist network. In 

connectionist terminology, the personal evaluation of each 

option attribute (the M matrix) represents the stimulus (i.e., 

the input pattern), and attention allocation [the w(t) vector] is 

used to filter the input so that only attended dimensions 

reach the second layer of the network. The contrast matrix 

(C) represents the (fixed) weight connections between the 

second and third layers of the network. The activation in the 

third layer represents the valence of each option (i.e., the 

momentary advantage/disadvantage of an option in relation 

to the other options). The fourth layer represents the network 

dynamics (with the S matrix; i.e., the trajectory of the 

decision process). Finally, the output activation of the fourth 

layer represents the preference. Note that the connections 

between the third and fourth layers are direct (i.e., they do 

not carry a weight). A more complete description of the 

network can be found in [15]. 

 
4 In contrast, the top level would have difficulties representing the 

valence of the options, because top-level activation is usually binary/crisp 

and rule-based. Also, connection weights are usually non-negative in the 

top-level; hence, the valence and preference inhibition matrices could not 

be easily represented in the top level. 



 

 

 

1) Decision Process: First, the ACS sends a request to the 

NACS for considering a particular decision. This request 

activates the option attribute nodes (the first layer of the DFT 

network in the bottom level) to represent the personal 

evaluation of these attributes. This activation is then 

propagated throughout the bottom-level network (as 

described in the Appendix). The output of the last layer of 

the bottom-level DFT network (i.e., the preferences) are 

transferred to the top-level chunks representing the options 

(and the option chunk activations are equal to the 

preferences).  

The chunks in the top level representing the options are 

retrieved by the ACS, and their activations are used to 

estimate the internal confidence level. The threshold used in 

the ACS on the internal confidence level is equivalent to the 

upper boundary in the DFT diffusion process (i.e., it controls 

when a decision is output, because the chunk activations in 

the top level are the preferences of the corresponding 

options in the bottom level DFT network). When the internal 

confidence level of one of the options crosses this boundary, 

a decision is made. Otherwise, the decision process 

continues for another iteration in the NACS.
5
  

2) Advantages: Including the DFT network in the bottom 

level of the NACS enhances both the decision-making 

capabilities of CLARION and the generality of the 

phenomena that DFT can account for. For instance, the top-

level chunks in CLARION are connected with other chunks 

that can allow for rule-based reasoning and similarity-based 

reasoning to be carried out [20], which could not have been 

carried out within DFT alone. The rules in the top level can 

also be used to validate the option (chunk) chosen by the 

DFT network. The validation rules can include, e.g., moral 

imperatives, cultural conventions, behavioral norms, etc. 

(because top-level rules can take precedence over bottom-

level activation/recommendation). These rules may not have 

been internalized sufficiently to be reflected in the valences 

 
5 Alternatively, the ACS can choose to make a decision and halt the 

diffusion process, without considering the threshold. In this case, the option 

with the maximum internal confidence level is chosen (as in DFT). 

in the bottom-level DFT network (see, e.g., [17], regarding 

internalization as top-down learning). By capturing the 

duality and the complex interaction of explicit and implicit 

processes, CLARION adds new dimensions to DFT. 

One consequence of the presence of rule-based reasoning 

in CLARION is that options or features can be eliminated 

from consideration. If some features are added/eliminated by 

rule-based reasoning, the inhibition matrix is automatically 

redefined because changing the features considered changes 

the similarity relations between the chunks (options) in 

CLARION (see (6)). In all cases, when the set of features or 

options is modified, the diffusion process in the DFT 

network is re-initialized. 

Similarity-based reasoning in CLARION also plays an 

important role in decision-making. Specifically, the 

similarity between the chunks representing the options in the 

top level of CLARION is used to define the inhibition 

matrix: 

∀i≠ j , sij = − sci ~c j
( )

= −
nci ∩c j

f (nc j
)

 (7) 

where S = [sij] is the inhibition matrix and sci~cj is the 

similarity between chunks i and j. (The diagonal terms of the 

S matrix can simply be set to one.) This definition satisfies 

the constraint on the inhibition matrix as defined in DFT 

(i.e., that inhibition is negatively related to similarity: [14]-

[15]). This definition of the inhibition matrix eliminates all 

the free parameters in DFT: similarity in CLARION is 

defined by the overlap of the chunk features, which is 

sufficient to define the inhibition matrix in DFT. 

In addition, when the ACS queries the NACS, it can 

specify the set of attributes and options to be considered in 

the decision. It can also provide a dynamical model of 

attention switching and focus the decision on one or several 

attributes of the options (e.g., by changing the focus on every 

iteration, as humans often do; e.g., [18]). This can account 

Fig. 2. A connectionist implementation of decision field theory. 

 



 

 

 

for the (sometimes arbitrary) attention selection process 

underspecified in DFT.  

Finally, the initial state of the diffusion process [initial 

preferences; p(0)] can be initialized using the base-level 

activations of the chunks representing the options (5). This 

can be used to represent decision biases based on previous 

choices made in similar situations. Alternatively, an effort to 

be objective can be made by the decision-maker and the 

diffusion process can be unbiased by setting p(0) = 0 and 

ignoring the base-level activations. 

C. Discussion  

It was shown in [16] that DFT can account simultaneously 

for a number of important phenomena in human cognition: 

violation of independence, stochastic dominance, preference 

reversals, and context dependent preferences. DFT can also 

account for stochastic transitivity, speed-accuracy trade-offs, 

preference reversal under time pressure, and decision times 

[14]. In multi-alternative choices, DFT can account for 

similarity effects, the attraction effect, the compromise 

effect, and the complex interaction between these 

phenomena [15]. In this work, we have shown how DFT can 

be enhanced by its inclusion in the bottom level of the 

NACS. CLARION eliminates all the free parameters in DFT 

by defining the inhibition matrix using similarity-based 

reasoning and the random-walk boundary with the ACS 

threshold on internal confidence levels. Also, rule-based 

reasoning in CLARION can be used to select options and 

attributes based on different external rules, including a 

validation process. Because CLARION includes a DFT 

network, it can also account for all the empirical phenomena 

discussed above, as well as more complex sociocultural 

decision-making situations [19]. Detailed explanations for 

the empirical phenomena discussed above are essentially the 

same as in DFT, so they are not repeated here. The reader is 

referred to the cited papers on DFT for details. 

IV. DECISION MAKING IN MEDICAL DIAGNOSTICS 

CLARION has been used to model several biases in 

decision-making and uncertain reasoning found in 

psychology experiments (see [20]). However, such research 

also has several real-life applications. One example 

application is medical diagnosis [21]. Here we present two 

example biases that can be accounted for in CLARION. 

A. Unpacking Principle  

Physicians tend to stop gathering information about 

patient symptoms when they are fairly certain of their 

diagnosis [21]. This can leave out important information that 

could affect the final diagnosis. For instance, a physician 

could make a diagnosis before learning about a patient full 

medical history and not consider some possible diagnoses 

that may be relevant (so that these additional possible 

diagnoses are not even considered as possibilities). In 

CLARION, this is represented by a parameter that acts as a 

threshold (ψ) on the internal confidence level received by the 

ACS from the NACS. When the threshold is crossed by the 

internal confidence level, the model stops gathering 

information and the ACS outputs the response. When the 

threshold is not crossed, the ACS is not satisfied with the 

chunk(s) received from the NACS and initiates another 

round of processing (by gathering more information and 

sending a new request to the NACS). The lower the value 

assigned to ψ, the more likely that some relevant information 

is missed and that some relevant chunk will never be 

considered in the decision. Hence, CLARION can account 

for the unpacking principle by setting the threshold on the 

internal confidence level to a low value. 

B. Ascertainment Bias  

Another common bias in medicine is the ascertainment 

bias [21]. Simply put, this is a form of stereotyping that 

induces the physician to base its diagnosis on prior beliefs 

(related to, e.g., gender, race, etc.) instead of symptoms. For 

instance, a physician may be reluctant to diagnose depression 

to a man, because he believes that man cannot suffer from 

depression (which is obviously incorrect). In CLARION, this 

bias is a special case of similarity-based reasoning. The 

disease and its symptoms would all be represented by chunks 

in the top level of the NACS. Rules in the top level would 

associate symptoms with the disease. These chunks would 

also be represented by a set of features in the bottom level. 

Specifically, the features of the disease chunk would include 

the features of a typical patient diagnosed with this disease 

(e.g., a woman over 50 years-old). When the physician meets 

the patient, demographic information is collected and 

questions are asked about his/her symptoms. The symptoms 

activate symptom chunks in the top level of the NACS (for 

rule-based reasoning, see (1)), and the patient’s description 

activates features in the bottom level of the NACS (i.e., for 

similarity-based reasoning, see (6)). These two sources of 

activation are propagated to the disease chunks and the 

results are integrated using the Max function (as in (3)). If β2 

is set to a high value (i.e., β2  >> β1), the disease chunk 

activation is going to be determined mostly by stereotyping, 

thus ignoring the patient’s actual symptoms. Because the 

final diagnosis is based on the chunk disease activation, this 

provides an intuitive explanation for the ascertainment bias 

in medical diagnoses. 

C. Discussion 

This section described two example biases in medical 

science that can be accounted for by CLARION. 

Interestingly, these biases were explained using the very core 

assumptions of CLARION, namely the ACS control over the 

NACS processing and similarity-based processing in the 

NACS bottom level. While explaining these two biases does 

not require the full complexity of DFT, it is fully compatible 

with it. The unpacking principle was explained by the 

threshold on decision-making, which plays an important role 

in DFT [14]-[16]. The ascertainment bias was explained with 

similarity-based processing, which also plays an important 

role in DFT (for response inhibition [22]). Hence, explaining 



 

 

 

these medical biases did not increase the complexity of the 

CLARION core theory included in this paper. 

V. CONCLUSION 

This article explored whether it is possible to reduce the 

complexity in a cognitive architecture while maintaining its 

generality. Here, we extracted the core theory of CLARION 

[4], [6]-[8] and showed that it was possible to explain 

cognitive/psychological phenomena in decision-making. 

These phenomena were mainly explained using the Non-

Action-Centered Subsystem (NACS) in CLARION, and the 

free parameters were not used in most cases (most were 

parameter-free explanations, while in others only some 

general constraints were listed). Many other phenomena have 

also been explained with the core theory of CLARION [20]. 

This exercise in minimality is important, because cognitive 

architectures have generally avoided the question of model 

complexity by responding with generality criteria (e.g., [5]). 

On the other end of the spectrum, simpler 

cognitive/psychological models are usually applicable only 

to a very limited set of tasks, which can lead to the problem 

of complex tasks being explained by an aggregate of several 

simple models that are mutually incompatible. As such, this 

work is an important first step in bridging the gap between 

mathematically simple models and general cognitive 

architectures.  

APPENDIX 

Decision Field Theory (DFT) is a prominent theory in 

decision-making [14]-[16]. More specifically, DFT is a 

diffusion model that allows for the modeling of the decision 

process instead of only focusing on the end-state. DFT can 

be understood using two fundamental notions: valence and 

preference [15]. The valance of an option is the momentary 

advantage/disadvantage of an option in relation to the other 

options being considered. In contrast, the preference of an 

option refers to the accumulation of all the valences that this 

option has received in the past. First, we explain how to 

compute the valence. 

The valence of option i at time t, denoted vi(t), is a 

function of three components. The first component, M = 

[mij] is a matrix representing the personal evaluation of each 

of the option attributes (mij is the value of option i on 

attribute j). For instance, quality and economy can be used as 

attributes when considering buying options for a car [15]. 

The second component of valence is attentional weight 

allocation. At every time step, one might concentrate on a 

different attribute of the options. For instance, one might be 

thinking specifically about car quality at the present moment, 

and switch her attention to economy at the following time 

step. Attention allocation is represented by the vector w(t). 

This notation highlights the dependency of attentional 

allocation on time. By default, only one of the attributes is 

attended to at any moment and attention is switched either 

randomly or using a Markov process [15].
6
 At this point, it is 

useful to note that the matrix product Mw(t) represents the 

weighed value of each option at time t (independent from the 

weighed values of other options in the set). For instance, a 

particular car (option) might look very interesting when 

focusing on the quality attribute but not so much when 

focusing on the economy attribute. Hence, a different 

weighed value would be assigned to the car at time t 

depending on which attribute received more attention. 

The third and final component of valence is a comparison 

process that contrasts the weighed value of each option with 

the weighed values of the other options in the set (e.g., 

comparing the appeal of car A and car B at time t). This is 

defined by the n × n contrast matrix C = [cij], where cii = 1 

and cij = -1/(n-1) for i ≠ j (where n is the number of options 

simultaneously considered). Intuitively, the contrast matrix 

subtracts from each option’s weighed value the average 

weighed value of the other options.  

Overall, the valence vector v(t) = {v1(t), v2(t), …, vn(t)} is: 

 

v(t) = CMw(t) (A1) 

 

where the symbols are as previously defined. 

The second fundamental notion in DFT is preference. By 

accumulating the valences through time, each option is 

assigned a preference for each time step. The n-dimensional 

vector p(t) representing the preferences is defined by: 

 

p(t) = Sp(t-1) + v(t) (A2) 

 

where v(t) is the valence vector at time t (A1) and S = [sij] is 

a n × n inhibition matrix. The preference vector represents a 

n-dimensional random walk process that accumulates 

valences across time for each option. A decision is made 

when the preference of one of the options crosses the upper 

bound or the time limit is reached. In the latter case, the 

maximum preference is chosen.
7
 

From (A2), we see that the dynamics of the decision 

process is determined by two factors: the initial state p(0) 

and the inhibition matrix S. The initial state is usually set to 

be unbiased [p(0) = 0]. However, a bias can be included to 

reflect the success of previous choices. The S matrix 

contains a set of n
2
 parameters defining the inhibition 

between the options. In most applications, this large number 

of free parameters is reduced by making the inhibition matrix 

symmetric. Hence, DFT models usually have n(n+1)/2 free 

parameters. The diagonal elements sii represent the memory 

of the previous preferences. When sii = 1, the model has 

perfect memory whereas sii = 0 implies that the model has no 

memory whatsoever. The off-diagonal terms represent lateral 

inhibition of the options. If sij = 0 for i ≠ j, there is no 

competition among the options and the preference of each 

option grows independently from the preferences of the other 

options. In contrast, if sij < 0 for i ≠ j, the stronger options 

 
6 Note that attention can be distributed across attributes according to 

DFT, but this additional flexibility is rarely used. 
7 Note that a lower bound can also be used to eliminate options. 



 

 

 

inhibit the weaker options. While the exact values assigned 

to the free parameters is not crucial, a general principle must 

be respected: the inhibition resulting from the preference of 

an option is a negative function of its similarity to the other 

options. Hence, two options that are very similar strongly 

inhibit each other whereas two options that are dissimilar 

only weakly inhibit one another. Respecting this principle 

when assigning the values to the free parameters is essential 

to the success of DFT [22]. 
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