

Abstract—Some mainstream psychologists have criticized

computational cognitive architectures on the issue of model

complexity and parameter tweaking (i.e., the likelihood that

cognitive architectures can explain any results and their

opposites). This paper tries to address these criticisms by

tackling the issue of model complexity in cognitive

architectures. Here, we start with a well-established cognitive

architecture, CLARION, and extract its core theory to explain

a wide range of data. The resulting minimal model was used to

provide parameter-free principled explanations for several

psychological “laws” of uncertain reasoning and decision-

making. This paper is concluded by a discussion of the

implication of parameter-free modeling in cognitive science and

psychology.

I. INTRODUCTION

ognitive theories are often underdetermined by data

[1]. As such, different theories, with very little in

common, can be used to explain the very same

phenomena observed in experimental psychology [2].

According to Newell, this problem can be resolved by

adding constraints to psychological theories. The most

intuitive approach to adding constraints to any scientific

theory is to collect more data. Newell [1] argued that more

data could be used to constraint a theory if the theory was

designed to explain a wider range of phenomena (both from

the same and other domains). So far such ‘integrative’

theories have taken the form of cognitive architectures, and

some of them have been very successful at explaining a wide

range of data (e.g., [3]-[4]). However, on the down side,

cognitive architectures tend to be complex, including

multiple modules and many free parameters (in their

computational implementations).

 The problem of complexity has been recognized and

acknowledged by Sun [5], who argued that a cognitive

architecture should be minimal. Minimality in cognitive

architectures needs to be attained in two senses. First, a

cognitive architecture should have only minimal initial

structures (i.e., modules). Second, the internal structures and

representations should also be kept to a minimum while

Manuscript received May 5, 2011. This research was supported by a

postdoctoral research fellowship from Le Fonds Québecois de la Recherche

sur la Nature et les Technologies to the first author and research grants

provided by the Army Research Institute, contracts DASW01-00-K-0012

and W74V8H-04-K-0002, to the second author.

S. Helie is with the Department of Psychological & Brain Sciences,

University of California, Santa Barbara, CA 93106-9660 USA (phone: 805-

284-9474; fax: 805-893-4303; e-mail: helie@psych.ucsb.edu).

R. Sun is with the Cognitive Science Department, Rensselaer

Polytechnic Institute, Troy, NY 12180-3590 USA (e-mail: rsun@rpi.edu)

capturing human data. In this article, we study how the

CLARION cognitive architecture [4], [6]-[8] can be

minimized, which leads to extracting its core theory.

The remainder of this article is organized as follow. First,

Section II introduces a core theory extracted from the

CLARION cognitive architecture. Second, the core theory

extracted in Section II is used to provide principled (and

almost parameter-free) explanations of decision-making

phenomena (Section III) and biases in medical diagnoses

(Section IV). This article concludes with a short discussion

of the implications of research on minimal cognitive

architectures.

II. THE CLARION COGNITIVE ARCHITECTURE

CLARION is a cognitive architecture that is, in part, based

on two basic assumptions: representational differences and

learning differences of two different types of knowledge:

implicit versus explicit [4], [6]-[8]. These two types of

knowledge differ in terms of accessibility and attentional

requirement. The top level of CLARION (as in Fig. 1)

contains explicit knowledge (easily accessible, but requiring

more attentional resources) whereas the bottom level

contains implicit knowledge (harder to access, but mostly

automatic). Because knowledge in the top and bottom levels

is different, Sun and his colleagues [6]-[8] have shown that it

is justified to integrate the results of top- and bottom-level

processing in order to capture the interaction of implicit and

explicit processing in humans.

CLARION is further divided into two different

subsystems: the Action-Centered Subsystem and the Non-

Action-Centered Subsystem. The Action-Centered

Subsystem (with both levels) contains procedural knowledge

concerning actions and procedures (i.e., it serves as the long-

term procedural memory), while the Non-Action-Centered

Subsystem (with both levels) contains declarative knowledge

(i.e., it serves as the long-term declarative memory, both

semantic and episodic; [8]). The Non-Action-Centered

Subsystem is controlled by the Action-Centered Subsystem.

The Non-Action-Centered Subsystem is also used for various

types of reasoning [6], [9].

The second assumption in CLARION concerns the

existence of different learning processes in the top and

bottom levels [7]-[8]. In the bottom level, implicit

associations are learned through gradual trial-and-error

learning. In contrast, learning of explicit rules in the top level

is often “one-shot” and represents the abrupt availability of

explicit knowledge following “explicitation” of implicit

knowledge or new acquisition of linguistic (or otherwise

How the Core Theory of CLARION Captures Human Decision-

Making

Sebastien Helie, Ron Sun

C

explicit) information. The inclusion of and the emphasis on

bottom-up learning (i.e., the transformation of implicit

knowledge into explicit knowledge) is, in part, what

distinguishes CLARION from other cognitive models (for

another example, see [10]).

A. The Action-Centered Subsystem

The Action-Centered Subsystem (ACS) is the main

subsystem in CLARION [7]-[8]. In addition to filling the

role of long-term procedural memory, the ACS is used to

capture some executive functions (i.e., the control of some

other subsystems). As such, the ACS receives all the inputs

from the environment, and provides action

recommendations. The description of the implementation of

the ACS included in the present paper is conceptual, because

technical formalities are not required to explain the range of

phenomena accounted for in this paper. Readers interested in

the technical aspects of the ACS are referred to [7]-[8].

1) Top Level: In the top level of the ACS (the Action Rule

Store), explicit knowledge is represented using condition and

action chunks. Condition chunks can be activated by the

environment (e.g., a stimulus) or other CLARION

subsystems (e.g., working memory). Action chunks can

represent motor programs (i.e., a response) or queries to

other CLARION subsystems. In particular, an action

recommendation of the ACS can be used to query the Non-

Action-Centered Subsystem with a round of reasoning (as

detailed later). In this case, the Non-Action-Centered

Subsystem can return one or several chunks resulting from

the round of reasoning, which can be used in the ACS as

action recommendations or as conditions for computation at

a future time step.

Chunks returned by the Non-Action-Centered Subsystem

are accompanied by their internal confidence levels (i.e.,

activations). The internal confidence level is for estimating

the confidence in the answer returned to the ACS. This

measure is important because the ACS does not have direct

access to the processing that led to this chunk being returned.

The ACS can use a threshold (i.e., ψ) on the internal

confidence level to decide on accepting/rejecting the result

of NACS processing. Also, the internal confidence level can

be used to estimate confidence in a produced response.

Both condition and action chunks are individually

represented by single nodes in a connectionist network and

have a clear conceptual meaning (i.e., localist

representations). The chunks in the top level of the ACS are

linked to implement rules of the form “Condition chunks” �

“Action chunks”. These rules can be simply represented by

connections weights, thus forming a linear connectionist

network. These explicit procedural rules, and the chunks

involved, can be learned bottom-up (via Rule-Extraction-

Refinement; [7]), by explicit hypothesis testing (via

Independent Rule Learning), or be fixed (e.g., by

experimental instructions; Fixed Rules). In all cases, top-

level rules are learned in a “one-shot” fashion [4].

2) Bottom Level: The bottom level of the ACS (Implicit

Decision Networks) uses feature-based representations to

capture implicit procedural knowledge. Each top-level chunk

is represented by a set of features in the bottom level (i.e.,

distributed representations). The chunk features (in the

bottom level) are connected to the chunks (in the top level)

so that they are usually activated together through bottom-up

activation (when the features are activated first) or top-down

activation (when the chunks are activated first).

The features of the condition and action chunks are

connected in the bottom level using several specialized

multilayer nonlinear connectionist networks. Each network

can be thought of as a highly efficient routine (once properly

trained) that can be used to accomplish a particular task.

Training of the bottom-level networks is iterative and done

using backpropagation implementing Q-learning [7].

B. The Non-Action-Centered Subsystem

The Non-Action-Centered Subsystem (NACS) of

CLARION is a slave-system used to capture the declarative

(both semantic and episodic) long-term memory [4]. The

inputs and outputs of this subsystem usually come from

another subsystem in CLARION, namely the ACS. In

Fig. 1. A high-level representation of CLARION.

addition, the NACS is used to capture several forms of

reasoning [6], [9]. Here, a technical description of the core

processes of the NACS is provided below. (The reader

interested in the complete description is referred to [4].)

1) Top Level: In the top level of the NACS (the General

Knowledge Store), explicit knowledge is represented by

chunks (as in the ACS top-level). However, unlike in the

ACS, NACS chunks are not divided into condition and

action chunks: all chunks represent concepts that can be used

as a condition or a conclusion in rule application. Each

chunk can be activated by: (a) an ACS query, (b) its

association with another chunk (via an associative rule), or

(c) its similarity to another chunk (via a similarity measure).

When a NACS chunk is activated by an ACS query, its

activation is generally set to unity (i.e., sj
ACS

 = 1). However,

the other two sources of activation can have smaller

(positive) values.

NACS chunks can be linked together to represent

‘associative’ rules (similar to a semantic network). In the

simplest case, by representing the associative rules using

connection weights, the top level of the NACS can be

represented by a linear connectionist network:

s j

r = si

i

∑ × wij

r
 (1)

where sj
r
 is the activation of chunk j following the

application of an associative rule, si is the activation of

chunk i, and wij
r
 is the strength of the associative rule

between chunks i and j (by default, wij
r
 = 1/n, where n is the

number of chunks in the condition of the associative rule).
1

The application of (1) is referred to here as rule-based

reasoning [11].

NACS chunks also share a relationship through similarity,

which enables reasoning by similarity. In CLARION, the

activation of a chunk caused by its similarity to other chunks

is termed similarity-based reasoning. More precisely,

icc

s

j sss
ji
×= ~ (2)

where sj
s
 is the activation of chunk j caused by its similarity

to other chunks, sci~cj is the similarity from chunk i to chunk

j, and si is the activation of chunk i. The similarity metric

(sci~cj) is defined in the bottom level of the NACS and is

detailed in the following subsection (see (6) below).

Overall, the activation of each chunk in the top level of the

NACS is equal to the maximum activation it receives from

the three previously mentioned sources, i.e.:

sj = Max(sj
ACS

, β1 × sj
r
, β2 × sj

s
) (3)

where sj is the overall activation of chunk j, and β1 and β2 are

scaling parameters quantifying the weights of rule-based and

1 It should be noted that all rules fire in parallel in the NACS of

CLARION. As such, a chunk can receive activation by more than one

associative rules. In this case, the maximum rule-based activation is used.

similarity-based reasoning respectively.
2
 By default, β1 = β2

= 1.

Regardless of the activation source, chunks that are

inferred (activated) in the NACS may be sent to the ACS for

consideration in action decision-making. Every chunk that is

sent back to the ACS is accompanied by an internal

confidence level (activation, as in (3)).

When only one chunk is to be returned to the ACS, a

chunk is stochastically selected using a Boltzmann

distribution:

P(chunk j) =
e

s j α

e
si α

i

∑
 (4)

where P(chunk j) is the probability that chunk j is selected to

be returned to the ACS, sj is the activation of chunk j (3), and

α is a free parameter representing the degree of randomness

(temperature). In cases where only one chunk is returned to

the ACS, this normalized activation is used as the internal

confidence level (instead of the ‘raw’ activation of (3)).

In addition to the above-mentioned activation, each chunk

has a base-level activation defined as:

b j

c = ib j

c + c tl

−d

l=1

n

∑ (5)

where bj
c
 is the base-level activation of chunk j, ibj

c
 is the

initial base-level activation (by default, ibj
c
 = 0), c is the

amplitude (by default, c = 2), d is the decay rate (by default,

d = 0.5), and tl is the lth use of the chunk. This measure has

an exponential decay and corresponds to the odds of needing

chunk j based on past experiences [12]. When the base-level

activation of a chunk falls below a “density” parameter (dc),

the chunk is no longer available for reasoning (rule-based or

similarity-based). In the NACS, base-level activations are

used mostly for capturing forgetting (using the density

parameter).
3

Like in the ACS, chunks in the NACS can be learned by

explicitly encoding given information (using, e.g., Fixed

Rules) and by explicitly encoding knowledge bottom-up

from the bottom levels of CLARION (both from the ACS

and the NACS; e.g., by using Rule-Extraction-Refinement).

In addition, each item in working memory has probability p

of being encoded in the NACS as a chunk at every time step

(for details on working memory, see [4]).

2) Bottom Level: As in the ACS, the bottom level of the

NACS (i.e., the Associative Memory Networks) uses feature-

based representations to (often redundantly) encode the top-

level chunks with distributed representations [6]. The

features are connected to the top-level chunks so that, when a

chunk is activated, its corresponding bottom-level feature-

based representation (if exists) is also activated and vice-

2 It should be noted that, mathematically, β1 and β2 add a single degree

of freedom to the model. However, separate free parameters were used here

to facilitate the interpretation of the parameter values.
3 Alternatively, the density parameter (dc) can be interpreted as a

stopping criterion at which one stops searching for a chunk and assumes

that it is not available in memory (i.e., forgotten).

versa. Alternatively, any bottom-level feature in the NACS

can be directly activated by an ACS query.

The connections between top-level chunks and their

feature-based representations allow for a natural computation

of similarity (2):

sci ~c j
=

nci ∩c j

f nc j
()

 (6)

where ncj represents the number features in chunk j, nci∩cj is

the feature overlap between chunks i and j, and f(x) is a

slightly super-linear positive function (by default, f(x) = x
1.1

).

Thus, similarity-based reasoning in CLARION is naturally

accomplished using (a) top-down activation by chunks of

their feature-based representations, (b) calculation of feature

overlap between any two chunks (6), and (c) bottom-up

activation of the top-level chunks (2).

One important form of similarity-based reasoning is

inheritance-based inference. In CLARION, this is done

using the reverse containment principle [11]. According to

the reverse containment principle, if chunk i represents a

category that is a superset of the category represented by

chunk j, all the (bottom-level) features of chunk i are

included in the (bottom-level) feature-based description of

chunk j (i.e., nci∩cj = nci). For instance, chunk i could

represent the category ‘bird’ while chunk j could represent

the category ‘sparrow’. In this case, the feature-based

description of ‘sparrow’ would include the feature-based

description of ‘bird’ (plus additional features unique to

sparrows). The reverse containment principle allows for the

emulation of a hierarchy of concepts (in the ideal case; [11]).

III. DECISION-MAKING

Decision-making in psychology is concerned with choices

and preferences. Preferences in decision-making have been

modeled very early in psychology and economics (e.g.,

[13]). When only two choices are available, important

phenomena from the psychological literature include strong

stochastic transitivity, independence of irrelevant

alternatives, and regularity in binary choices (as reviewed in

[14]). When more than two choices are available, the main

phenomena observed are the similarity effect, the attraction

effect, the compromise effect, and the complex interactions

between these effects (as reviewed in [15]).

Throughout the years, several models of decision-making

have been proposed (e.g., elimination by aspect, Thurstone

preferential model, additive utility models, etc; for a review,

see [16]). While these models usually have the desirable

property of being amenable to analytical solutions, they

cannot account for all the afore-mentioned effects

simultaneously. To our knowledge, the only exception is

decision field theory (DFT), which can account

simultaneously for all the afore-mentioned phenomena, is

amenable to analytical solution, and can be captured by a

connectionist model [16]. CLARION embodies such a model

in its NACS.

A. Capturing and Further Enhancing Decision Field

Theory within CLARION

We now examine the role of decision field theory (DFT)

in the CLARION cognitive architecture. The reader not

familiar with DFT and/or its terminology is referred to the

Appendix for a summary description. First, decision-making

is carried out in the CLARION NACS [4]. Because all the

intermediate results of DFT are numerical and fuzzy, DFT is

likely to be mainly carried out in the bottom level of the

NACS. In addition, the dynamic in DFT is driven mainly by

similarity-based inhibition (matrix S in the Appendix), which

is also naturally carried out in the bottom level of the NACS.

Similar to the ACS, the bottom level of the NACS is

composed of several specialized networks (e.g.,

backpropagation networks). Hence, a special module in the

bottom level of the NACS of CLARION, devoted to such

decision-making, can include a connectionist network

implementing DFT (as proposed by [15]).
4

Before describing the network implementation, two points

need to be emphasized. First, including a DFT network in the

bottom level of the NACS does not increase the number of

free parameters in CLARION, and only one free parameter is

varied to explain the decision-making phenomena (i.e., ψ,

the threshold on the internal confidence level). Second, each

option from the DFT network is redundantly represented as a

chunk in the top level of the NACS, and the activations of

the option chunks are equal to the outputs from the fourth

layer of the DFT network (i.e., the preferences of the

options; as detailed next).

B. A Connectionist Implementation of Decision Field

Theory

A connectionist network implementing decision field

theory (DFT) within the bottom-level NACS of CLARION is

presented in Fig. 2. As can be seen, the matrix formulation of

DFT (as presented in the Appendix) allows for a natural

representation in a four-layer connectionist network. In

connectionist terminology, the personal evaluation of each

option attribute (the M matrix) represents the stimulus (i.e.,

the input pattern), and attention allocation [the w(t) vector] is

used to filter the input so that only attended dimensions

reach the second layer of the network. The contrast matrix

(C) represents the (fixed) weight connections between the

second and third layers of the network. The activation in the

third layer represents the valence of each option (i.e., the

momentary advantage/disadvantage of an option in relation

to the other options). The fourth layer represents the network

dynamics (with the S matrix; i.e., the trajectory of the

decision process). Finally, the output activation of the fourth

layer represents the preference. Note that the connections

between the third and fourth layers are direct (i.e., they do

not carry a weight). A more complete description of the

network can be found in [15].

4 In contrast, the top level would have difficulties representing the

valence of the options, because top-level activation is usually binary/crisp

and rule-based. Also, connection weights are usually non-negative in the

top-level; hence, the valence and preference inhibition matrices could not

be easily represented in the top level.

1) Decision Process: First, the ACS sends a request to the

NACS for considering a particular decision. This request

activates the option attribute nodes (the first layer of the DFT

network in the bottom level) to represent the personal

evaluation of these attributes. This activation is then

propagated throughout the bottom-level network (as

described in the Appendix). The output of the last layer of

the bottom-level DFT network (i.e., the preferences) are

transferred to the top-level chunks representing the options

(and the option chunk activations are equal to the

preferences).

The chunks in the top level representing the options are

retrieved by the ACS, and their activations are used to

estimate the internal confidence level. The threshold used in

the ACS on the internal confidence level is equivalent to the

upper boundary in the DFT diffusion process (i.e., it controls

when a decision is output, because the chunk activations in

the top level are the preferences of the corresponding

options in the bottom level DFT network). When the internal

confidence level of one of the options crosses this boundary,

a decision is made. Otherwise, the decision process

continues for another iteration in the NACS.
5

2) Advantages: Including the DFT network in the bottom

level of the NACS enhances both the decision-making

capabilities of CLARION and the generality of the

phenomena that DFT can account for. For instance, the top-

level chunks in CLARION are connected with other chunks

that can allow for rule-based reasoning and similarity-based

reasoning to be carried out [20], which could not have been

carried out within DFT alone. The rules in the top level can

also be used to validate the option (chunk) chosen by the

DFT network. The validation rules can include, e.g., moral

imperatives, cultural conventions, behavioral norms, etc.

(because top-level rules can take precedence over bottom-

level activation/recommendation). These rules may not have

been internalized sufficiently to be reflected in the valences

5 Alternatively, the ACS can choose to make a decision and halt the

diffusion process, without considering the threshold. In this case, the option

with the maximum internal confidence level is chosen (as in DFT).

in the bottom-level DFT network (see, e.g., [17], regarding

internalization as top-down learning). By capturing the

duality and the complex interaction of explicit and implicit

processes, CLARION adds new dimensions to DFT.

One consequence of the presence of rule-based reasoning

in CLARION is that options or features can be eliminated

from consideration. If some features are added/eliminated by

rule-based reasoning, the inhibition matrix is automatically

redefined because changing the features considered changes

the similarity relations between the chunks (options) in

CLARION (see (6)). In all cases, when the set of features or

options is modified, the diffusion process in the DFT

network is re-initialized.

Similarity-based reasoning in CLARION also plays an

important role in decision-making. Specifically, the

similarity between the chunks representing the options in the

top level of CLARION is used to define the inhibition

matrix:

∀i≠ j , sij = − sci ~c j
()

= −
nci ∩c j

f (nc j
)

 (7)

where S = [sij] is the inhibition matrix and sci~cj is the

similarity between chunks i and j. (The diagonal terms of the

S matrix can simply be set to one.) This definition satisfies

the constraint on the inhibition matrix as defined in DFT

(i.e., that inhibition is negatively related to similarity: [14]-

[15]). This definition of the inhibition matrix eliminates all

the free parameters in DFT: similarity in CLARION is

defined by the overlap of the chunk features, which is

sufficient to define the inhibition matrix in DFT.

In addition, when the ACS queries the NACS, it can

specify the set of attributes and options to be considered in

the decision. It can also provide a dynamical model of

attention switching and focus the decision on one or several

attributes of the options (e.g., by changing the focus on every

iteration, as humans often do; e.g., [18]). This can account

Fig. 2. A connectionist implementation of decision field theory.

for the (sometimes arbitrary) attention selection process

underspecified in DFT.

Finally, the initial state of the diffusion process [initial

preferences; p(0)] can be initialized using the base-level

activations of the chunks representing the options (5). This

can be used to represent decision biases based on previous

choices made in similar situations. Alternatively, an effort to

be objective can be made by the decision-maker and the

diffusion process can be unbiased by setting p(0) = 0 and

ignoring the base-level activations.

C. Discussion

It was shown in [16] that DFT can account simultaneously

for a number of important phenomena in human cognition:

violation of independence, stochastic dominance, preference

reversals, and context dependent preferences. DFT can also

account for stochastic transitivity, speed-accuracy trade-offs,

preference reversal under time pressure, and decision times

[14]. In multi-alternative choices, DFT can account for

similarity effects, the attraction effect, the compromise

effect, and the complex interaction between these

phenomena [15]. In this work, we have shown how DFT can

be enhanced by its inclusion in the bottom level of the

NACS. CLARION eliminates all the free parameters in DFT

by defining the inhibition matrix using similarity-based

reasoning and the random-walk boundary with the ACS

threshold on internal confidence levels. Also, rule-based

reasoning in CLARION can be used to select options and

attributes based on different external rules, including a

validation process. Because CLARION includes a DFT

network, it can also account for all the empirical phenomena

discussed above, as well as more complex sociocultural

decision-making situations [19]. Detailed explanations for

the empirical phenomena discussed above are essentially the

same as in DFT, so they are not repeated here. The reader is

referred to the cited papers on DFT for details.

IV. DECISION MAKING IN MEDICAL DIAGNOSTICS

CLARION has been used to model several biases in

decision-making and uncertain reasoning found in

psychology experiments (see [20]). However, such research

also has several real-life applications. One example

application is medical diagnosis [21]. Here we present two

example biases that can be accounted for in CLARION.

A. Unpacking Principle

Physicians tend to stop gathering information about

patient symptoms when they are fairly certain of their

diagnosis [21]. This can leave out important information that

could affect the final diagnosis. For instance, a physician

could make a diagnosis before learning about a patient full

medical history and not consider some possible diagnoses

that may be relevant (so that these additional possible

diagnoses are not even considered as possibilities). In

CLARION, this is represented by a parameter that acts as a

threshold (ψ) on the internal confidence level received by the

ACS from the NACS. When the threshold is crossed by the

internal confidence level, the model stops gathering

information and the ACS outputs the response. When the

threshold is not crossed, the ACS is not satisfied with the

chunk(s) received from the NACS and initiates another

round of processing (by gathering more information and

sending a new request to the NACS). The lower the value

assigned to ψ, the more likely that some relevant information

is missed and that some relevant chunk will never be

considered in the decision. Hence, CLARION can account

for the unpacking principle by setting the threshold on the

internal confidence level to a low value.

B. Ascertainment Bias

Another common bias in medicine is the ascertainment

bias [21]. Simply put, this is a form of stereotyping that

induces the physician to base its diagnosis on prior beliefs

(related to, e.g., gender, race, etc.) instead of symptoms. For

instance, a physician may be reluctant to diagnose depression

to a man, because he believes that man cannot suffer from

depression (which is obviously incorrect). In CLARION, this

bias is a special case of similarity-based reasoning. The

disease and its symptoms would all be represented by chunks

in the top level of the NACS. Rules in the top level would

associate symptoms with the disease. These chunks would

also be represented by a set of features in the bottom level.

Specifically, the features of the disease chunk would include

the features of a typical patient diagnosed with this disease

(e.g., a woman over 50 years-old). When the physician meets

the patient, demographic information is collected and

questions are asked about his/her symptoms. The symptoms

activate symptom chunks in the top level of the NACS (for

rule-based reasoning, see (1)), and the patient’s description

activates features in the bottom level of the NACS (i.e., for

similarity-based reasoning, see (6)). These two sources of

activation are propagated to the disease chunks and the

results are integrated using the Max function (as in (3)). If β2

is set to a high value (i.e., β2 >> β1), the disease chunk

activation is going to be determined mostly by stereotyping,

thus ignoring the patient’s actual symptoms. Because the

final diagnosis is based on the chunk disease activation, this

provides an intuitive explanation for the ascertainment bias

in medical diagnoses.

C. Discussion

This section described two example biases in medical

science that can be accounted for by CLARION.

Interestingly, these biases were explained using the very core

assumptions of CLARION, namely the ACS control over the

NACS processing and similarity-based processing in the

NACS bottom level. While explaining these two biases does

not require the full complexity of DFT, it is fully compatible

with it. The unpacking principle was explained by the

threshold on decision-making, which plays an important role

in DFT [14]-[16]. The ascertainment bias was explained with

similarity-based processing, which also plays an important

role in DFT (for response inhibition [22]). Hence, explaining

these medical biases did not increase the complexity of the

CLARION core theory included in this paper.

V. CONCLUSION

This article explored whether it is possible to reduce the

complexity in a cognitive architecture while maintaining its

generality. Here, we extracted the core theory of CLARION

[4], [6]-[8] and showed that it was possible to explain

cognitive/psychological phenomena in decision-making.

These phenomena were mainly explained using the Non-

Action-Centered Subsystem (NACS) in CLARION, and the

free parameters were not used in most cases (most were

parameter-free explanations, while in others only some

general constraints were listed). Many other phenomena have

also been explained with the core theory of CLARION [20].

This exercise in minimality is important, because cognitive

architectures have generally avoided the question of model

complexity by responding with generality criteria (e.g., [5]).

On the other end of the spectrum, simpler

cognitive/psychological models are usually applicable only

to a very limited set of tasks, which can lead to the problem

of complex tasks being explained by an aggregate of several

simple models that are mutually incompatible. As such, this

work is an important first step in bridging the gap between

mathematically simple models and general cognitive

architectures.

APPENDIX

Decision Field Theory (DFT) is a prominent theory in

decision-making [14]-[16]. More specifically, DFT is a

diffusion model that allows for the modeling of the decision

process instead of only focusing on the end-state. DFT can

be understood using two fundamental notions: valence and

preference [15]. The valance of an option is the momentary

advantage/disadvantage of an option in relation to the other

options being considered. In contrast, the preference of an

option refers to the accumulation of all the valences that this

option has received in the past. First, we explain how to

compute the valence.

The valence of option i at time t, denoted vi(t), is a

function of three components. The first component, M =

[mij] is a matrix representing the personal evaluation of each

of the option attributes (mij is the value of option i on

attribute j). For instance, quality and economy can be used as

attributes when considering buying options for a car [15].

The second component of valence is attentional weight

allocation. At every time step, one might concentrate on a

different attribute of the options. For instance, one might be

thinking specifically about car quality at the present moment,

and switch her attention to economy at the following time

step. Attention allocation is represented by the vector w(t).

This notation highlights the dependency of attentional

allocation on time. By default, only one of the attributes is

attended to at any moment and attention is switched either

randomly or using a Markov process [15].
6
 At this point, it is

useful to note that the matrix product Mw(t) represents the

weighed value of each option at time t (independent from the

weighed values of other options in the set). For instance, a

particular car (option) might look very interesting when

focusing on the quality attribute but not so much when

focusing on the economy attribute. Hence, a different

weighed value would be assigned to the car at time t

depending on which attribute received more attention.

The third and final component of valence is a comparison

process that contrasts the weighed value of each option with

the weighed values of the other options in the set (e.g.,

comparing the appeal of car A and car B at time t). This is

defined by the n × n contrast matrix C = [cij], where cii = 1

and cij = -1/(n-1) for i ≠ j (where n is the number of options

simultaneously considered). Intuitively, the contrast matrix

subtracts from each option’s weighed value the average

weighed value of the other options.

Overall, the valence vector v(t) = {v1(t), v2(t), …, vn(t)} is:

v(t) = CMw(t) (A1)

where the symbols are as previously defined.

The second fundamental notion in DFT is preference. By

accumulating the valences through time, each option is

assigned a preference for each time step. The n-dimensional

vector p(t) representing the preferences is defined by:

p(t) = Sp(t-1) + v(t) (A2)

where v(t) is the valence vector at time t (A1) and S = [sij] is

a n × n inhibition matrix. The preference vector represents a

n-dimensional random walk process that accumulates

valences across time for each option. A decision is made

when the preference of one of the options crosses the upper

bound or the time limit is reached. In the latter case, the

maximum preference is chosen.
7

From (A2), we see that the dynamics of the decision

process is determined by two factors: the initial state p(0)

and the inhibition matrix S. The initial state is usually set to

be unbiased [p(0) = 0]. However, a bias can be included to

reflect the success of previous choices. The S matrix

contains a set of n
2
 parameters defining the inhibition

between the options. In most applications, this large number

of free parameters is reduced by making the inhibition matrix

symmetric. Hence, DFT models usually have n(n+1)/2 free

parameters. The diagonal elements sii represent the memory

of the previous preferences. When sii = 1, the model has

perfect memory whereas sii = 0 implies that the model has no

memory whatsoever. The off-diagonal terms represent lateral

inhibition of the options. If sij = 0 for i ≠ j, there is no

competition among the options and the preference of each

option grows independently from the preferences of the other

options. In contrast, if sij < 0 for i ≠ j, the stronger options

6 Note that attention can be distributed across attributes according to

DFT, but this additional flexibility is rarely used.
7 Note that a lower bound can also be used to eliminate options.

inhibit the weaker options. While the exact values assigned

to the free parameters is not crucial, a general principle must

be respected: the inhibition resulting from the preference of

an option is a negative function of its similarity to the other

options. Hence, two options that are very similar strongly

inhibit each other whereas two options that are dissimilar

only weakly inhibit one another. Respecting this principle

when assigning the values to the free parameters is essential

to the success of DFT [22].

REFERENCES

[1] A. Newell, Unified Theories of Cognition. Cambridge: Harvard

University Press, 1990.

[2] S. Roberts, and H. Pashler, “How persuasive is a good fit? A

comment on theory testing,” Psychological Review, vol. 107, pp. 358-

367, 2000.

[3] J. R. Anderson, and C. Lebiere. The Atomic Components of Thought.

Mahwah: Erlbaum, 1998.

[4] R. Sun, Duality of the Mind: A Bottom-Up Approach Toward

Cognition. Mahwah: Lawrence Erlbaum Associates, 2002.

[5] R. Sun, “Desiderata for cognitive architectures,” Philosophical

Psychology, vol. 17, pp. 341-373, 2004.

[6] S. Helie and R. Sun, “Incubation, insight, and creative problem

solving: A unified theory and a connectionist model,” Psychological

Review, vol. 117, pp. 994-1024, 2010.

[7] R. Sun, E. Merrill, and T. Peterson, “From implicit skills to explicit

knowledge: A bottom-up model of skill learning,” Cognitive Science,

vol. 25, pp. 203-244, 2001.

[8] R. Sun, P. Slusarz, and C. Terry, “The interaction of the explicit and

the implicit in skill learning: A dual-process approach,”

Psychological Review, vol. 112, pp. 159-192, 2005.

[9] R. Sun and X. Zhang, “Accounting for a variety of reasoning data

within a cognitive architecture,” Journal of Experimental and

Theoretical Artificial Intelligence, vol. 18, pp. 169-191, 2006.

[10] S. Helie, R. Proulx, and B. Lefebvre, “Bottom-up learning of explicit

knowledge using a Bayesian algorithm and a new Hebbian learning

rule,” Neural Networks, vol. 24, pp. 219-232, 2011.

[11] R. Sun, Integrating Rules and Connectionism for Robust

Commonsense Reasoning. New York: John Wiley and Sons, 1994.

[12] J. R. Anderson, The Adaptive Character of Thought. Hillsdale:

Erlbaum, 1990.

[13] L. L. Thurstone, “A law of comparative judgement,” Psychological

Review, vol. 34, pp. 273-286, 1927.

[14] J. R. Busemeyer, and A. Diederich, “Survey of decision field theory,”

Mathematical Social Sciences, vol. 43, pp. 345-370, 2002.

[15] R. M. Roe, J. R. Busemeyer, and J. T. Townsend, J.T.,

“Multialternative decision field theory: A dynamic connectionist

model of decision making,” Psychological Review, vol. 108, pp. 370-

392, 2001.

[16] J. R. Busemeyer, and J. G. Johnson, “Micro-process models of

decision making,” in The Cambridge Handbook of Computational

Psychology, R. Sun, ed. Cambridge University Press, 2008, pp. 302-

321.

[17] R. Sun, X. Zhang, and R. Mathews, “Capturing human data in a letter

counting task: Accessibility and action-centeredness in representing

cognitive skills,” Neural Networks, vol. 22, pp. 15-29, 2009.

[18] C. Bundesen, T. Habekost, and S. Kyllingsbæk, “A neural theory of

visual attention: Bridging cognition and neurophysiology,”

Psychological Review, vol. 112, pp. 291-328, 2005.

[19] R. Sun, Ed., Cognition and Multi-Agent Interaction: From Cognitive

Modeling to Social Simulation. Cambridge University Press, 2006.

[20] S. Helie, and R. Sun, “Accounting for memory, categorization,and

reasoning phenomena using the CLARION cognitive architecture,”

unpublished.

[21] P. Croskerry, “The importance of cognitive errors in diagnosis and

strategies to minimize them,” Academic Medecine, vol. 78, pp. 775-

780, 2003.

[22] M. Usher, and J. L. McClelland, “Loss aversion and inhibition in

dynamical models of multialternative choice,” Psychological Review,

vol. 111, pp. 757-769, 2004.

