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Abstract 

The task requirements during the course of category learning are critical for promoting within-

category representations (e.g., correlational structure of the categories). Recent data suggests 

that for unidimensional rule-based structures, only inference training promotes the learning of 

within-category representations, and generalization across tasks is limited. It is unclear if this is a 

general feature of rule-based structures, or a limitation of unidimensional rule-based structures. 

The present work reports the results of three experiments further investigating this issue using an 

exclusive-or rule-based structure where successful performance depends upon attending to two 

stimulus dimensions. Participants were trained using classification or inference and were tested 

using inference. For both the classification and inference training conditions, within-category 

representations were learned and could be generalized at test (i.e., from classification to inference) 

and this result was dependent upon a congruence between local and global regions of the 

stimulus space. These data further support the idea that the task requirements during learning 

(i.e., a need to attend to multiple stimulus dimensions) are critical determinants of the category 

representations that are learned and the utility of these representations for supporting 

generalization in novel situations. 

 

 

Keywords: knowledge representation; training methodology; generalization; category learning; 
rule-guided behavior 
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Learning and generalization of within-category representations  

in a rule-based category structure 

Categories are central to virtually all cognitive processes. Much effort has been devoted 

to understanding how categories are represented and the particular training features that might 

influence how they are learned (e.g., Markman & Ross, 2003). Outside of the laboratory, however, 

learning a category representation is not typically an end in and of itself. Instead, the utility of 

category representations lie in their ability to support other functions (e.g., decision making in 

novel situations - Hoffman & Rehder, 2010; Markman & Ross, 2003) and the generalizability of 

category representations depends upon the nature of the representation itself (Carvalho & 

Goldstone, 2014; Ell, Smith, Peralta, & Helie, 2017; Hélie, Shamloo, & Ell, 2017; Hoffman & 

Rehder, 2010; Levering & Kurtz, 2015). Thus, it is important to understand the limits of different 

types of category representations and to identify training features that promote those 

representations that are most successful for generalization.  

Category representations that focus on within-category similarities (e.g., prototypicality, 

covariation/range of stimulus dimensions within a category) have been argued to be more 

versatile in supporting generalization than representations that focus on between-category 

differences (e.g., learn what dimensions are relevant for classification, along with decision criteria 

or category boundaries) (Chin-Parker & Ross, 2002, 2004; Ell et al., 2017; Helie, Shamloo, & Ell, 

2018; Hélie et al., 2017; Kattner, Cox, & Green, 2016; Yamauchi & Markman, 1998). For instance, 

within-category representations can support both generalization to novel stimuli and 

generalization to a novel task (Chin-Parker & Ross, 2002; Ell et al., 2017). Furthermore, within-

category representations can be applied to novel categorization problems (Hélie et al., 2017; 

Kattner et al., 2016) and be reconfigured to form new category representations (Helie et al., 2018). 

Although a number of methodological factors have been identified as being important for 

promoting within-category representations (e.g., blocked training - Carvalho & Goldstone, 2014; 
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concept learning - Hélie et al., 2017; observational training - Levering & Kurtz, 2015;  family-

resemblance category structures - Markman & Ross, 2003), the emphasis of the present work is 

on the goal of the task (Goldstone, 1996; Hoffman & Rehder, 2010; Love, 2005; Markman & Ross, 

2003; Minda & Ross, 2004; Yamauchi & Markman, 1998). The task goal of classifying a stimulus 

into one of a number of contrasting categories has been argued to lead to a between-category 

representation (Erickson & Kruschke, 1998; Hélie et al., 2017; Maddox & Ashby, 1993; Nosofsky, 

Palmeri, & McKinley, 1994; Smith & Minda, 2002) whereas the task goal of inferring a missing 

stimulus feature from a partial stimulus and a category label has been argued to lead to a within-

category representation (Chin-Parker & Ross, 2002; Ell et al., 2017; Markman & Ross, 2003).  

The importance of classification versus inference in promoting within-category 

representations has been argued to depend upon the category structure (Ell et al., 2017; Hélie et 

al., 2017). Information-integration category structures (in which information from multiple 

dimensions needs to be integrated prior to making a categorization response) generally promote 

within-category representations (Ashby & Waldron, 1999; Ell et al., 2017; Hélie et al., 2017; 

Thomas, 1998). In contrast, although rule-based category structures (in which logical rules are 

applied to the stimulus dimensions diagnostic of category membership) can promote within-

category representations when learned by inference, rule-based structures may be incapable of 

promoting within-category representations when learned by classification (Ell et al., 2017)1. 

An inability to learn within-category representations, however, may not be a general 

feature of rule-based category structures. Ell et al. (2017) used a unidimensional, rule-based 

structure in which the stimuli varied along two continuous-valued dimensions, but only a single 

stimulus dimension was diagnostic of category membership. Thus, successful classification 

depended upon a single dimension, but the within-category representation (i.e., knowledge of the 

                                                           
1 Although logical rules can be based on either within- or between-category representations (e.g., large or 
larger than), the subset of logical rules learned when classifying rule-based structures tends to depend 
upon between-category representations (Casale, Roeder, & Ashby, 2012; Ell & Ashby, 2012; Ell, Ing, & 
Maddox, 2009; Hélie et al., 2017). 

Page 4 of 46Attention, Perception, & Psychophysics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

WITHIN-CATEGORY REPRESENTATIONS  5 
 

correlational structure of the categories) depended upon both stimulus dimensions. The inability 

to learn and generalize within-category representations when classifying a rule-based structure 

was interpreted as reflecting a limitation of the between-category representation (i.e., the logical 

rule used for classification). While this may be true when the classification rule depends upon a 

single stimulus dimension, it is also possible that within-category representations could be learned 

if the classification rule depended upon the same number of dimensions as the within-category 

representation.  

The following experiments investigate this issue using a two-dimensional, rule-based 

category structure (i.e., exclusive-or, Figure 1, bottom). In this category structure, successful 

classification (i.e., classifying stimuli as a member of category A or B) requires attention to both 

stimulus dimensions. Similarly, successful inference (i.e., inferring a missing stimulus feature 

when given one feature and the category label) also requires attention to both stimulus 

dimensions. Although the between-category representation (i.e., the logical rule: members of 

category A either have larger circles and steeper lines, or smaller circles and shallower lines, than 

members of category B.) would convey some rudimentary information about the within-category 

correlations, it is not at all clear if this information would be sufficient to support generalization 

from classification to inference.  

Briefly, across three experiments, participants were trained on classification or inference 

and subsequently tested on inference. If it is not possible to learn within-category representations 

when classifying a rule-based structure, only participants trained by inference should evidence 

knowledge of the within-category correlations at test. In contrast, if attending to multiple stimulus 

dimensions during training is a critical factor promoting the learning of within-category 

representations, participants in both conditions should evidence knowledge of the within-category 

correlations at test. To foreshadow, the results support the latter hypothesis suggesting that 

within-category representations can be learned in a rule-based task and generalized to a novel 

task (i.e., from classification to inference). 
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Experiment 1 

Method 

Participants and design 

 One-hundred nineteen 

participants were recruited from 

the University of Maine student 

community and received partial 

course credit for participation. 

Sample size (approximately 30 

participants/condition) was 

estimated based upon a similar 

experiment in our lab (Ell et al., 

2017). Data collection was 

continued beyond this target 

(until the end of the semester) in 

order to provide sufficient 

research opportunities for 

participants in an introductory 

psychology research pool. 

Participants were randomly 

assigned to one of two 

experimental conditions: 

classification or inference 

training. A total of nine participants were excluded from analyses: seven due to a software error 

and two participants did not complete the task within the hour-long experimental session, resulting 

Figure 1. (Top) Example displays for the two training methodologies. 
(Bottom) Rule-based category structure used in Experiments 1 and 3. 
Category A (crosses) and B (circles) stimuli used during the training 
phase. The insets are example stimuli. The solid black boundaries 
represent the optimal conjunctive decision strategy. The dashed black 
boundaries represent an alternative decision strategy (see text for 
details). Stimuli used during the test phase are plotted as filled red 
circles. Probe stimuli used during the final block of training are plotted 
as blue squares. See text for details. (Color figure online). 
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in sample sizes of 55 in each condition. All participants reported normal (20/20) or corrected to 

normal vision. 

Stimuli and apparatus 

 The stimuli comprised circles (varying continuously in diameter) and an attached line 

(varying continuously in orientation from horizontal) (Figure 1, top). The category structures were 

created using a variation of the randomization technique (Ashby & Gott, 1988) in which the stimuli 

were generated by sampling from bivariate normal distributions defined in a diameter × angle 

(from horizontal) space in arbitrary units. The category means for the stimuli in each of the four 

quadrants of Figure 1 (two per category) were µA1 = [650, 250], µA2 = [350, -50], µB1 = [350, 250], 

and µB2 = [650, -50]. The covariance matrices were ΣA =  [
3875 3625
3625 3875

]  and 

Σ
B
 =  [

3875 -3625
-3625 3875

] (i.e., a correlation of 1 between diameter and angle for each quadrant 

assigned to category A and -1 for each quadrant assigned to category B).  

On each trial a random sample (x, y) was drawn from category A or B and used to create 

a stimulus with a circle of  x
2
 pixels in diameter and a line  180y

800
  degrees (counterclockwise from 

horizontal) with a length of 200 pixels. The line was always connected to the highest point of the 

circle. For the training phase, 80 stimuli (40 from each category, 20 from each quadrant) were 

generated for each of the 4 blocks of trials (Black symbols in Figure 1). For the test phase, 56 

stimuli (28 from each category, 14 from each quadrant) were used for the single test block (red 

circles in Figure 1). The experiment was run using the Psychophysics toolbox (Brainard, 1997; 

Kleiner et al., 2007; Pelli, 1997) in the Matlab computing environment. Each stimulus was 

displayed on a 1600 x 1200 pixel resolution 20-inch LCD with a viewing distance of 20 in. 

Participants were expected to use a conjunctive strategy in the classification task (e.g., 

the solid black decision boundaries plotted in Figure 1 – If the circle is large and high on orientation 

or if the circle is small and low on orientation, respond A; otherwise respond B.), but given the 

large separation between stimuli in the four quadrants, other strategies could also result in high 
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levels of accuracy. For instance, a strategy assuming participants 

integrate the stimulus values prior to any decision process would also 

predict high levels of performance during training (e.g., the linear 

classifier plotted as dashed black boundaries in Figure 1; see the 

Appendix for more details). To address this issue, probe stimuli (16 total) 

were included in the final block of classification training, resulting in a 

total of 96 trials during the final block (Light blue squares in Figure 1, 

Table 1). The example conjunctive and linear classifiers plotted in Figure 

1 would predict different categorization responses for a subset of the 

probe stimuli. For instance, for the two circled probe stimuli, the 

conjunctive classifier (solid) would predict a category A response 

whereas the linear classifier (dashed) would predict a category B 

response. In order to equate the similarity between conditions, probe stimuli were also included 

in the inference condition. The probe stimuli were not members of either category, thus there is 

no correct or incorrect response to these stimuli. Thus, no feedback was provided on probe trials 

and the probe stimuli were excluded from accuracy analyses. Probe trials were only used to 

estimate individual participant decision strategies in the classification condition.  

Procedure 

 Each participant was run individually. At the beginning of the training phase, participants 

were informed that stimuli would comprise a circle with a line connected at the top, and that the 

stimuli would be presented individually, but would vary across trials in circle diameter and line 

angle. In the classification condition, participants were instructed that their goal was to learn to 

distinguish between members of category A and B by trial and error. On each trial, participants 

were shown a stimulus and prompted with “Is this image a member of category “A” or category 

“B?” and instructed to select a category for each stimulus by pressing a button labeled “A” or a 

button labeled “B” on the keyboard to indicate which category was selected.  

Table 1. Probe 
stimuli coordinates 
(arbitrary units) 

Diameter 
650 
650 
650 
650 
560 
526 
491 
457 
350 
350 
350 
350 
560 
526 
491 
457 

Angle 
40 
74 
108 
142 
250 
250 
250 
250 
40 
74 
108 
142 
-50 
-50 
-50 
-50 
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 In the inference condition, participants were instructed that their goal was to learn to draw 

the missing stimulus component by trial and error (Figure 1). On each trial, either a circle or a line 

was presented with the category label. Participants were instructed to draw the missing stimulus 

component. On half of the trials they were asked “Draw the circle that goes with this line angle” 

and on the other half they were asked to “Draw the line that goes with this circle”. To draw the 

circle, participants used the mouse to indicate the location of the bottom of the circle (indicating 

the diameter of the circle relative to the dot at the beginning of the line). To draw the line, 

participants used the mouse to indicate the location of the end of the line (indicating the orientation 

of the line relative to horizontal). The circle or line was then drawn to match the participant’s 

selection with a line beginning at the dot at the top of the circle (at a constant length of 200 pixels). 

Subsequently, participants were able to fine-tune the circle diameter or the line angle using the 

arrow keys on the keyboard. Any selected stimulus values outside the allowable range (diameter 

10 to 600 pixels, angle: 50 to 110 degrees) were reset to the nearest allowable value.   

Stimulus presentation was response terminated with an upper limit of 60 s. After 

responding, feedback was provided. In the classification condition, the screen was blanked and 

the word “CORRECT” (in green, accompanied by a 500 Hz tone) or “WRONG” (in red, 

accompanied by a 200 Hz tone) was displayed. In the inference condition, the correct circle or 

line was overlaid upon the participant’s response (in black). In all conditions, feedback duration 

was 2 s and the screen was then blanked for 1 s prior to the appearance of the next stimulus.  

In addition to the trial-by-trial feedback, summary feedback was given at the end of each 

training block. For the classification condition, proportion correct for the block was shown 

(participants were informed that higher numbers are better) and for the inference condition the 

root-mean-square-error between the drawn and correct stimulus was shown (participants were 

informed that lower numbers are better). The presentation order of the stimuli was randomized 

within each block, separately for each participant. Participants completed several practice trials 
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prior to beginning the training phase to familiarize themselves with the task using stimuli randomly 

sampled (with equal probability) from the training categories.   

 During the test phase, all participants performed the inference task (1 block of 56 trials). 

Instruction was provided to all conditions and participants completed several practice trials using 

stimuli randomly sampled from the test phase stimuli (with equal probability). No feedback was 

provided during the test phase.  

Results 

Training Phase: Performance on Classification and Inference 

 In the inference condition, the diameter-angle correlations within each quadrant were in 

the appropriate direction (i.e., positive for the upper right and lower left, negative for the lower 

right and upper left), thus the following analyses average across the quadrants2. Data were also 

averaged across quadrants in the classification condition, and for all subsequent analyses, unless 

otherwise noted. 

 The dependent measure was different for the classification (proportion correct) and the 

inference (correlation between the given and produced stimulus values) conditions, therefore the 

data from each condition were analyzed separately. Performance generally improved across 

blocks for both conditions (Figure 2, Table 2). Consistent with this observation, separate paired-

samples t-tests indicated significant increases from block 1 to block 4 in proportion correct for the 

classification condition: [t(54) = -4.491, p < .001, d = .72] and the diameter-angle correlation for 

the inference condition: [t(54) = -4.454, p < .001, d = .52].  

 

                                                           
2 For inference training, and the test phase, the observed diameter-angle correlations for the category with 
the negative within-category correlation (i.e., category B in Experiments 1 and 3, category A in Experiment 
2) was multiplied by -1. This was done in order to allow for the aggregation with the data from the category 
with the positive within-category correlation. For presentation purposes, the training data are plotted prior 
to multiplying by -1. 
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Table 2. Training and test phase performance in Experiment 1.  

 Training 
Block 1 

 Training 
Block 4 

 Test  

 M SD M SD M SD 
Classification .58 .10 .71 .14 .19 .23 
Inference .12 .29 .27 .45 .32 .40 
       

Note: Performance during classification is indexed by proportion correct whereas performance during 
inference training, and test, is indexed by the diameter-angle correlation. 

Training Phase: Classification Decision Strategy 

Participants were expected to learn conjunctive strategies in the classification condition. 

In order to confirm this, a number of decision bound models  (Ashby, 1992a; Maddox & Ashby, 

1993) were fit to the individual participant data from the classification condition. Four different 

types of models were evaluated in order to assess an individual’s strategy during the final training 

block. Unidimensional models assume that the participant sets a single decision criterion on one 

stimulus dimension (e.g., if the circle is large, respond A; otherwise respond B). Conjunctive 

models assume separate decision criteria on both dimensions (e.g., If the circle is large and high 

on orientation or if the circle is small and low on orientation, respond A; otherwise respond B. 

Figure 1). Information-integration models assume that the participant integrates the stimulus 

Figure 2. Training performance in the classification (proportion correct) and inference 
(correlation between the given and produced stimulus values) conditions of Experiment 1. 
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information from both dimensions prior to making a categorization decision (Figure 1). Finally, 

random responder models assume that the participant guessed. Each model was fit separately 

to the final block of training (including the probe stimuli), for each participant, using a standard 

maximum likelihood procedure for parameter estimation (Ashby, 1992b; Wickens, 1982) and the 

Bayes information criterion for goodness-of-fit (Schwarz, 1978) (see the Appendix for a more 

detailed description of the models and fitting procedure). Based upon our previous work (Ell et al., 

2017), participants using information-integration strategies during classification training, but not 

unidimensional strategies or guessing, would be expected to promote within-category 

representations that could be used to support performance on the test phase inference task. If 

simply attending to both stimulus dimensions during classification training is sufficient to promote 

within-category representations, then participants using conjunctive strategies would also be 

expected to perform well during the test phase inference task. Consistent with expectations, the 

majority of participants learned a task-appropriate, conjunctive strategy (64%) with the remaining 

participants being best fit by either the unidimensional (9%) or random responder (27%) models.  

Test phase 

 Initial inspection of the correlations during test phase suggests the learning of the 

correlational structure of the categories in both the inference and classification training conditions 

(Figure 3). To analyze these data, one-sample t-tests (within each condition), an independent 

samples t-test comparing the conditions, and the scaled JZS Bayes Factor, B01, (Jeffreys, 1961; 

Kass & Raftery, 1995; Rouder, Speckman, Sun, Morey, & Iverson, 2009) were computed. 

Consistent with the inspection of the Figure 3 data, the correlation during test was significantly 

greater than zero in both the inference [t(50) = 6.22, p < .001, d = .87; B01 = 142785.4 to 1 in favor 

of the alternative hypothesis] and classification [t(53) = 5.88 p < .001, d = .80; B01 = 53171.69 to 
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1 in favor of the alternative hypothesis] conditions3. For the classification condition, this result was 

driven primarily by participants using a task-appropriate, conjunctive strategy (conjunctive: M 

= .28, SD = .21; unidimensional: M = -.10, SD = .11; random responder: M = .05, SD = .17). An 

independent samples t-test comparing the two conditions, however, indicated superior test-phase 

performance in the inference condition [t(103) = 2.26, p = .03, d = .44; B01 = 1.96 to 1, weakly 

favoring the alternative hypothesis].  

  

If test-phase performance is driven by learning during the training phase, the amount of 

learning during the training phase should be predictive of test-phase performance. To assess this, 

in the classification condition, the Pearson correlation was computed between the change in 

                                                           
3  Given the considerable individual variability in the change in performance during training, we conducted 
a follow-up analysis focusing on participants who performed above chance during the final block of training 
(i.e., accuracy > 60% correct for classification; correlation > .11 or < -.11 for inference). This subgroup of 
participants evidenced stronger knowledge of the within-category correlations in both the classification. [n 
= 38, M = .25, SD = .22, t(37) = 7.08,  p < .001, d = 1.15; B01 = 608390.3 to 1 in favor of the alternative 
hypothesis] and inference [n = 24, M  = .53, SD = .37, t(23) = 6.99, p < .001, d= 1.43; B01 = 41629.9 to 1 in 
favor of the alternative hypothesis] conditions. Performance in the two conditions was significantly different 
[t(60) = 3.63, p < .001, d = .95; B01 = 48.27 to 1 in favor of the alternative hypothesis]. 

Figure 3. Performance on the inference task during the test phase (Left). Note that the 
diameter-angle correlations from category B are multiplied by -1 prior to averaging with 
the diameter-angle correlations from category A, thus positive values suggest learning 
of the within-category correlations. Relationship between learning during training and 
test phase performance in the classification (middle, r = .57) and inference (right, r = 
.62) conditions. The grey area represent a 95% confidence interval. 
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accuracy across blocks (block 4 minus block 1) and the observed diameter-angle correlation 

during the test phase. In the inference condition, the Pearson correlation was computed between 

the change in the observed diameter-angle correlation (block 4 minus block 1) and the observed 

diameter-angle correlation during the test phase. There was a significant positive relationship 

between learning during training and test-phase performance in both the classification: [r(52) = .57, 

p <.001] and inference: [r(49) = .62, p<.001] conditions. The strength of this relationship, however, 

did not differ between the classification and inference conditions [Fisher’s z = 0.36, p = .72]. In 

sum, these data suggest learning of the within-category representations for both the classification 

and inference conditions, with a possible advantage for participants in the inference condition.  

 Summary 

 The goal of Experiment 1 was to determine if classification of a two-dimensional, rule-

based category structure was sufficient to support the learning of within-category representations 

or if an inability to learn within-category representations is a more general feature of rule-based 

structures (Ell et al., 2017). Consistent with the former, participants demonstrated knowledge of 

the within-category correlations at test in both the inference and classification conditions, although 

test phase performance in the inference condition was superior. That being said, training phase 

performance was positively associated with test phase performance to a similar extent in both 

conditions. In sum, these data suggest that learning to classify a rule-based structure that requires 

attention to multiple stimulus dimensions is sufficient to support the learning of within-category 

representations that can be generalized to a novel task (i.e., from classification to inference).  

Experiment 2 

The results of Experiment 1 suggest that inference training may be superior to 

classification in promoting the learning of within-category representations, but there was evidence 

that within-category representations were learned in the classification condition as well. This latter 

result may be a consequence of the need to attend to both stimulus dimensions for successful 

performance during training, but there is another possible explanation. The Experiment 1 analysis 
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computed the observed diameter-angle correlation within each quadrant of the stimulus space, 

and then averaged these results across the two quadrants assigned to each category, in order to 

estimate the within-category representations. There 

was, however, a congruence between the local 

diameter-angle correlation within each quadrant and 

the global correlation within each category (e.g., 

positive within the two quadrants assigned to 

category A and positive within category A, across the 

stimulus space). Thus, another possibility is that this 

local-global congruence facilitated learning of the 

within-category representations. Experiment 2 

investigates this question using a category structure 

in which the local diameter-angle correlation within each quadrant is incongruent with the global 

within-category correlation (e.g., negative within the two quadrants assigned to category A and 

generally positive within category A, across the stimulus space – see Figure 4). If learning within-

category representations in the classification condition is dependent solely upon a need to attend 

to both stimulus dimensions, participants should still evidence knowledge of the within-category 

correlations at test. If, instead, the local-global congruence is critical, it should be difficult for 

participants to learn the within-category correlations. It is expected that participants in the 

inference condition will still be able to learn the within-category correlations with the Figure 4 

structure, but it is possible that inference too would be sensitive to a local-global incongruence. 

Method 

Participants and design 

 Seventy-four participants were recruited from the University of Maine student community 

and received partial course credit for participation. Participants were randomly assigned to one of 

two experimental conditions: classification or inference training. Two participants were excluded 

Figure 4. Conjunctive category structure used 
in Experiment 2. Category A (crosses) and B 
(circles) stimuli used during the training phase. 
Stimuli used during the test phase are plotted 
as filled red circles. Probe stimuli used during 
the final block of training are plotted as blue 
squares. (Color figure online). 
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from analyses due to software error, resulting in sample sizes of 34 (classification) and 38 

(inference). All participants reported normal (20/20) or corrected to normal vision. 

Stimuli, apparatus, and procedure 

 The stimuli and procedure were identical to Experiment 1 with one exception. The stimuli 

within each quadrant of the stimulus space were rotated 45 degrees (about the quadrant mean), 

in order to reduce the congruence between the diameter-angle correlation within each quadrant 

and diameter-angle correlation within each category (Figure 4).  

Results 

Training Phase 

Only participants in the classification training condition showed learning of the category 

structures as accuracy was higher in block 4 than in block 1: [t(33) = -4.36, p < .001, d = .76] 

(Figure 5, Table 3). There was no significant increase in the correlation learned from block 1 to 

block 4 in the inference condition: [t(37) = -0.28, p > .78, d = .06].  

 The decision-bound models described in Experiment 1 were fit to the final training block 

in the classification training condition. A majority of the participants in the classification condition 

learned a task-appropriate, conjunctive strategy (53%) with the remaining participants being best 

fit by either the unidimensional (10%), information-integration (3%), or random responder (33%) 

models.  
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Table 3. Training and test phase performance in Experiment 2. 

 Training 
Block 1 

 Training 
Block 4 

 Test  

 M SD M SD M SD 
Classification .54 .11 .63 .19 .10 .24 
Inference .03 .20 .04 .22 .04 .30 
       

Note: Performance during classification is indexed by proportion correct whereas performance during 
inference training, and test, is indexed by the diameter-angle correlation. 

Test Phase 

Inspection of the test phase data revealed that participants often mis-estimated the 

direction of the diameter-angle correlation across quadrants of the stimulus space in both 

conditions (Table 4). Due to this issue, the correlations were not averaged across quadrants. 

Instead, diameter-angle correlations were evaluated within each quadrant against a critical M = 

+/-.11 [estimated using α = .05 two-tailed, t(33) = 2.04 and an average SD = .31]. The diameter-

angle correlations in the lower-left quadrant (classification) and the upper left quadrant (inference) 

were significantly different from 0 and in the opposite direction of the actual correlation. The 

correlations in the remaining quadrants were not significantly different from 0. In sum, there was 

no evidence that participants were able to learn the within-category correlations with the Figure 4 

category structures. 

Figure 5. Training performance in the classification and inference conditions of Experiment 2. 
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Table 4. Within-category correlations by quadrant 

 Classification  Inference 
Quadrant M SD B01  M SD B01 
Upper Right 0.08 0.33 2.32, null  0.03 0.35 4.92, null 
Lower Right -0.05 0.27 2.91, null  0.01 0.34 5.61, null 
Lower Left 0.18 0.35 8.21, alternative  -0.01 0.43 5.79, null 
Upper Left -0.08 0.28 1.52,null  -0.15 0.33 8.98, alternative 
Note. B01 is the JZS Bayes Factor for the one-sample t-test comparing the mean in each quadrant to 0. 
“null” and “alternative” refer to the hypothesis favored by B01.  

 

Summary 

The goal of Experiment 2 was to investigate if the learning of within-category 

representations while classifying was dependent upon a congruence between the local, diameter-

angle correlations within each quadrant and the global diameter-angle correlations within each 

category. The results suggest that this was the case. Although participants learned to classify the 

Figure 4 structure, there was no evidence that within-category representations were learned at 

test. Unexpectedly, this was also true in the inference condition. The results of Experiment 1, 

along with previous work from our lab (Ell et al., 2017), suggested that inference training facilitated 

the learning of within-category representations regardless of the category structure. The results 

of Experiment 2 suggest that even for inference training, there is a limit to the learning of within-

category representations. In sum, the learning of within-category representations, with the rule-

based structures investigated here, is dependent upon a local-global congruence regardless of

the task goal. 

Experiment 3 

 The results of Experiments 1 and 2 suggest that inference training more strongly promotes 

the learning of within-category representations, at least when there is a congruence between local 

and global regions of the stimulus space. This advantage may be driven by a practice effect given 

that participants in the inference condition performed the same task during the training and test 
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phases whereas participants in the classification condition performed different tasks during the 

training and test phases. Experiment 3 addresses this issue using a two-alternative, forced-choice 

version of inference training that more closely matches classification training and enables the 

investigation of generalization to a novel task in the inference condition (i.e., from forced-choice 

to a production task). In addition, the forced-choice procedure in Experiment 3 is more similar to 

inference training procedures used in previous work (e.g., Yamauchi & Markman, 1998). The vast 

majority of previous work with the forced-choice procedure, however, has used discrete-valued 

dimensions with a small number of stimuli. Experiment 3 extends this work to a category structure 

to continuous-valued dimensions with a large number of stimuli. 

 

Method 

Participants and design 

Seventy-one participants were recruited from the University of Maine student community 

and received partial course credit for participation. Participants were randomly assigned to one of 

two experimental conditions: classification or inference training. One participant was excluded 

from analyses due to software error. The resulting sample sizes by condition were classification: 

37; inference 33. All participants reported normal (20/20) or corrected to normal vision. 
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Stimuli and apparatus 

The stimuli were identical to Experiment 1 with the 

exception of the inference condition.  Two response 

alternatives were presented 325 pixels below the 

stimulus, one offset 325 pixels left of center and the offset 

325 pixels right of center (Figure 6). One of the response 

alternatives was correct. The incorrect alternative was 

generated by selecting the corresponding value for the 

missing dimension from the contrasting category. The 

location of correct/incorrect alternatives were 

counterbalanced. 

Procedure 

The procedure was identical to Experiment 1 with the exception that during training, 

participants in the inference condition were asked to choose from one of the two response 

alternatives rather than drawing the missing stimulus dimension. In addition, trial-by-trial feedback 

in the inference condition was presented in the same way as in the classification condition. The 

test phase was identical to Experiment 1 (i.e., all participants were instructed to draw the missing 

stimulus dimension and no feedback was provided). 

Results 

Training Phase 

 Learning was evident in both conditions. (Figure 7, Table 5). Although the dependent 

measure (proportion correct) was now the same across conditions, training performance was 

analyzed separately for the two conditions to maintain consistency with the analyses in the 

previous experiments. Separate paired-samples t-tests indicated significant increases from block 

1 to block 4 in proportion correct for the classification condition: [t(36) = -4.163, p < .001, d = .87] 

and for the inference condition: [t(32) = -2.920, p = .006, d = .56].  

Figure 6. (Example display for the 
inference training methodology. 
(Color figure online). 
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Table 5. Training and test phase performance in Experiment 3. 

 Training 
Block 1 

 Training 
Block 4 

 Test  

 M SD M SD M SD 
Classification .58 .11 .69 .19 .13 .23 
Inference .52 .09 .60 .18 .10 .28 
             

Note: Performance during classification and inference training is indexed by proportion correct whereas 
performance during test is indexed by the diameter-angle correlation. 
 

 

The decision-bound models described in Experiment 1 were fit to the final training block 

in the classification training condition. Consistent with expectations, the majority of participants 

learned a task-appropriate, conjunctive strategy (57%) with the remaining participants being best 

fit by the unidimensional (5%), information-integration (5%), or random responder (33%) models. 

Test Phase 

Participants in the classification condition evidenced knowledge of the within-category 

correlations [t(36) = 3.53,  p = .001, d = .58; B01 = 1/27.44, favoring the alternative hypothesis] 

whereas participants in the inference condition performed marginally better than chance [t(32) = 

1.99 p = .06, d = .35; B01 = 1.07, equivocal support for the null and alternative hypotheses]. The 

two conditions, however, were not significantly different from each other [t(68) = .53, p = .60, d 

Figure 7. Training performance in the Classification and (forced-choice) Inference conditions 
of Experiment 3. 
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= .13; B01 = 3.6 in favor of the null hypothesis] (Figure 8)4. For the classification condition, this 

result was driven primarily by participants using a task-appropriate, conjunctive strategy 

(conjunctive: M = .23, SD = .24; unidimensional: M = .05, SD = .14; random responder: M = .003, 

SD = .16).  

In both conditions, however, greater learning during the training phase was associated 

with higher performance during the test phase [classification: r(36) = .47, p = .003; inference: r(32) 

= .67, p < .001]. A re-analysis of the data from the inference condition excluding five potential 

multivariate outliers [robust Mahalanobis squared distances were calculated and values that 

exceeded 𝑥(1)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙2 = 5.02,𝛼 = .025 were considered outliers] indicated an association identical 

in magnitude to that of the classification condition [r(25) = .47, p = .01].  

 

                                                           
4 Participants who performed above chance during the final block of training (i.e., accuracy > 60% correct) 
evidenced stronger knowledge of the within-category correlations in both the classification. [n = 24, M 
= .20, SD = .24, t(23) = 4.09,  p < .001, d = .83; B01 = 70.87 to 1 in favor of the alternative hypothesis] and 
inference [n =15, M  = .25, SD = .34, t(14) = 2.08, p = .014, d= .72; B01 = 1.4 weakly favoring the 
alternative hypothesis] conditions. Performance in the two conditions, however, were not significantly 
different [t(37) = -.52, p = .60, d = .17; B01 = 2.82 to 1 in favor of the null hypothesis]. 

Figure 8. Performance on the inference task during the test phase (Left). Note that positive 
values suggest learning of the within-category correlations. Relationship between learning 
during training and test phase performance in the classification (r = .47) (Middle) and 
inference (r = .67) conditions. Note that the diameter-angle correlations from category B 
are multiplied by -1 prior to averaging with the diameter-angle correlations from category 
A. The grey bars represent a 95% confidence interval. 
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Summary 

 The primary goal of Experiment 3 was to investigate the extent to which a two-choice 

version of inference training would support the learning of within-category representations. 

Participants in the classification condition were able to learn the test-phase correlations. 

Participants in the two-choice inference condition, however, performed only marginally better than 

chance. That being said, test phase performance was not significantly different in the classification 

and inference conditions. Similar to Experiment 1, there was a positive correlation between 

training and test phase performance which did not differ by condition. Taken together, these 

results suggest that by eliminating a potential practice effect by introducing a two-choice version 

of the inference task, participants in both conditions learned the within-category correlations 

equally well. 

General Discussion 

 Previous research suggests that the between-category representations (i.e., logical rules) 

thought to support the learning of rule-based tasks do not also support the learning of within-

category representations (Ell et al., 2017). This work, however, focused on a rule-based structure 

for which learning required attention to a subset of the stimulus dimensions that were critical for 

the within-category representation. The present work investigated the extent to which an inability 

to learn within-category representations is a general limitation of rule-based structures or a more 

specific limitation resulting from a mismatch between the information necessary for learning 

between- and within-category representations. The results of Experiment 1 were consistent with 

the latter hypothesis. More specifically, participants were able to learn to classify a two-

dimensional, rule-based structure and this knowledge was able to support the learning of within-

category representations that could be generalized to a novel task (i.e., inference). This result 

was dependent upon a congruence between local and global features of the category structure 

(Experiment 2). Although participants who learned by inference in Experiment 1 demonstrated 

stronger knowledge of the within-category representations at test, this advantage seems to have 
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reflected a practice effect (Experiment 3). In sum, these results suggest that a task goal thought 

to promote the development of between-category representations (i.e., classification) can 

promote the development of within-category representations, but such learning is sensitive to 

characteristics of the category structure.  

Learning and Generalization of Within-Category Representations 

Consistent with previous work (Anderson & Fincham, 1996; Ell et al., 2017; Thomas, 1998), 

within-category correlations could be learned during categorization. These representations could 

also be generalized across tasks with knowledge of the within-category correlations learned

during classification training being able to support inference at test. Both learning and 

generalization, however, depended upon a congruency between the local, diameter-angle 

correlations within each quadrant and the global diameter-angle correlations within each category 

(Experiment 2). Disrupting this congruency seems to have impaired the ability to learn within-

category representations while sparing category learning, suggesting a different type of category 

representation may have supported the learning of the Experiment 2 categories. Although we do 

not have a direct measure of the category representation learned in Experiment 2, the model-

based analyses suggest that nearly half of the participants learned a between-category 

representation (i.e., logical rules) and previous work suggests that rule-based strategies are used 

with other exclusive-or category structures (Kurtz, Levering, Stanton, Romero, & Morris, 2013; 

Nosofsky et al., 1994). Nevertheless, we cannot rule out the possibility that participants learned 

a different type of within-category representation (e.g., exemplars, prototypes, within-category 

range).  

A related, and important, question is how exactly are within-category representations 

learned from classification (Experiments 1 and 3)? If most participants are learning between-

category representations during classification of the Figure 1 category structure, as suggested by 

the model-based analyses, are these between-category representations facilitating the 

development of within-category representations? The optimal conjunctive rule (i.e., members of 
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category A either have larger circles and steeper lines, or smaller circles and shallower lines, than 

members of category B.) conveys some basic information about the within-category correlations. 

It may be the case that this information was sufficient to support generalization from classification 

to inference. The results of Experiment 2 suggest, however, suggest that this is unlikely. In 

Experiment 2, the optimal rule was the same, but participants only learned within-category 

correlations consistent with this rule in one quadrant of the stimulus space. That being said, our 

method does not allow for distinguishing between participants that are good at using this rule to 

perform inference versus participants that have a richer knowledge of the within-category 

correlations, thus more work is needed to address this possibility.  

Alternatively, perhaps there is a learning system operating that is acquiring within-category 

representations that could be used to support both classification and inference. For instance, the 

DIVA (Kurtz, 2007) and SUSTAIN (Love, Medin, & Gureckis, 2004) models of category learning, 

other kinds of models that learn multiple category prototypes (e.g., Ashby & Waldron, 1999), or 

hybrid models that combine exemplar and prototype processes (Minda & Smith, 2001; Smith & 

Minda, 1998) would, in principle, be able to estimate within-category correlations. Indeed, 

SUSTAIN has been successful in accounting for different patterns of performance across linearly 

separable and nonlinearly separable category structures  in inference versus classification (Love 

et al., 2004). Given that within-category representations can be used to mimic rule-like behavior 

(e.g., Hélie, Ell, Filoteo, & Maddox, 2015), this would provide a possible means by which within-

category representations could support a wide range of observable behavior. 

Boundary Conditions on the Learning of Within-Category Representations 

 The aim of Experiment 2 was to determine if disrupting the congruence between the local, 

diameter-angle correlations within each quadrant and the global diameter-angle correlations 

within each category would impair the learning of within-category representations with 

classification training. Participants were able to learn during classification training, albeit at lower 

levels of accuracy than in Experiment 1, where there was local-global congruence. Unlike 
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Experiment 1, however, this learning did not promote the knowledge of within-category 

representations that could be used to support inference during the test phase. Surprisingly, the 

local-global incongruence also impaired the learning of within-category representations with 

inference training, suggesting the learning of within-category representations may be generally 

sensitive to characteristics of the category structure. That being said, we cannot rule out the 

possibility that our approach to introducing incongruence altered some other factor that may be 

critical for learning within-category representations. For instance, although there is minimal 

overlap between the categories, the overlap occurs in different parts of the stimulus space in 

Experiments 1 (center of the stimulus space) and 2 (edge of the stimulus space), but it is not clear 

why this would make it impossible to learn the within-category correlations with inference training 

while preserving learning during classification training. 

 The results of Experiment 1 suggest that inference may be superior to classification for 

promoting the learning of within-category representations. In the inference condition, the training 

and test phases were identical with the exception of the removal of feedback during the test phase. 

Thus, the test phase advantage in the inference condition may reflect a practice effect. The goal 

of Experiment 3 was to address this issue using a two-alternative, forced-choice version of 

inference training that more closely matches classification training and is more similar to inference 

training procedures used in previous work (e.g., Yamauchi & Markman, 1998). Test phase 

performance in the inference and classification conditions did not significantly differ in Experiment 

3 suggesting that the Experiment 1 inference advantage may reflect a practice effect. In 

comparison to the Experiment 1 inference task, the Experiment 3 inference task discretized the 

response and feedback. Although these methodological changes increased the similarity between 

the classification and inference conditions, it is possible that they contributed to the relatively weak 

test phase performance in the inference condition of Experiment 3. This is somewhat surprising 

given the success of two-alternative, forced choice inference tasks (Markman & Ross, 2003). The 

vast majority of previous work, however, has used discrete-valued dimensions with a small 
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number of stimuli.. It is possible that forced-choice inference works well in promoting within-

category representations having discrete-valued dimensions with a small number of stimuli, but 

is not well suited to a category structure having continuous-valued dimensions with a large 

number of stimuli. 

 A common theme in the research on the kinds of category representations learned during 

training is that participants learn what is necessary to perform the task at hand (Ell et al., 2017; 

Hélie et al., 2017; Love, 2005; Markman & Ross, 2003; Pothos & Chater, 2002; Yamauchi & 

Markman, 1998). For example, with the rule-based structure used by Ell et al. (2017), successful 

performance during classification training did not depend upon learning the relationship between 

diameter and angle. Instead, participants needed only to attend selectively to a single, diagnostic 

stimulus dimension in order to achieve perfect classification performance. The present results 

suggest that selective attention to a single stimulus dimension may hinder the ability to learn the 

two-dimensional, within-category correlations. Attention to multiple stimulus dimensions would 

seem to be a necessary, but not sufficient to promote the learning of this kind of within-category 

representation.  

That being said, it is possible to learn and generalize other types of within-category 

representations when learning to categorize based upon a single stimulus dimension. A 

seemingly minor tweak of the typical classification instructions (i.e., concept training - participants 

learn categories by classifying stimuli as a member/nonmember of a target category, Maddox, 

Bohil, & Ing, 2004; Posner & Keele, 1968; Reber, 1998; Smith & Minda, 2002; Zeithamova, 

Maddox, & Schnyer, 2008) shifts the emphasis from between-category differences to within-

category similarities (Casale & Ashby, 2008; Hélie et al., 2017). In Hélie et al., participants learned 

two rule-based category structures (simultaneously) along a single diagnostic stimulus dimension 

(category A vs. category B and category C vs. category D).  Participants were subsequently tested 

on a novel categorization problem using the same categories (i.e., category B vs. category C). 

Participants were successfully able to generalize the knowledge when receiving concept training, 
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but not when receiving traditional classification training, suggesting that concept training promoted 

a representation based on the categories themselves rather than between-category differences 

(see also Hoffman & Rehder, 2010; Kattner et al., 2016). Thus, it may be the case that concept 

training promotes a minimal within-category representation that is sufficient to support 

classification on a novel rule-based categorization problem (e.g., the range of values on the 

stimulus dimensions), but not so rich so as to include knowledge that was not required during 

training (e.g., the correlational structure of the categories). 

 

Conclusions 

In sum, taken together with previous work, the current results suggest that the demands 

of learning may be the most critical factor in promoting within-category representations. If the task 

requires participants to learn about the relationship between dimensions, they can learn within-

category representations. Such demands can be imposed by the nature of the category structure 

(e.g., the exclusive-or structure used here, the information-integration structure used by Ell et al., 

2017) or by the goal of the task (e.g., inference with unidimensional rule-based structures). These 

data also suggest important boundary conditions on the learning of within-category 

representations. For instance, even when learning about the relationship between stimulus 

dimensions, incongruency between local and global regions of the stimulus space can disrupt the 

learning of within-category representations. Knowledge of this limitation may be an important 

factor to consider when developing training regimens to promote the knowledge of within-category 

representations. These results complement the growing body of work highlighting the impact of 

category structure and task goal on category representations (Carvalho & Goldstone, 2015; 

Hammer, Diesendruck, Weinshall, & Hochstein, 2009; Levering & Kurtz, 2015). These results 

also build upon previous work by investigating the relationship between these factors and the 

generalization of categorical knowledge (Carvalho & Goldstone, 2014; Chin-Parker & Ross, 2002; 
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Hoffman & Rehder, 2010) thereby providing a window into the cognitive utility of category 

representations in novel situations.  
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Appendix  

Model-Based Analyses 

To get a more detailed description of how participants categorized the stimuli, a number 

of different decision bound models (Ashby, 1992a; Maddox & Ashby, 1993) were fit separately to 

the final block training data for each participant in the classification conditions. These data 

included 80 stimuli from categories A and B as well as 16 probe stimuli that were used to help 

differentiate between the models described below. Decision bound models are derived from 

general recognition theory (Ashby & Townsend, 1986), a multivariate generalization of signal 

detection theory (Green & Swets, 1966). It is assumed that, on each trial, the percept can be 

represented as a point in a multidimensional psychological space and that each participant 

constructs a decision bound to partition the perceptual space into response regions. The 

participant determines which region the percept is in, and then makes the corresponding response. 

While this decision strategy is deterministic, decision bound models predict probabilistic 

responding because of trial-by-trial perceptual and criterial noise (Ashby & Lee, 1993). 

This Appendix briefly describes the decision bound models. For more details, see Ashby 

(1992a) or Maddox and Ashby (1993). The classification of these models as either rule-based or 

information-integration models is designed to reflect current theories of how these strategies are 

learned (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998) and has received considerable 

empirical support (see Ashby & Valentin, 2017 for a review).  

Rule-Based Models 

Unidimensional Classifier (UC). This model assumes that the stimulus space is partitioned 

into two regions by setting a criterion on one of the stimulus dimensions. Two versions of the UC 

were fit to the data. One version assumes that participants attended selectively to diameter and 

the other version assumes participants attended selectively to angle. The UC has two free 
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parameters, one corresponds to the decision criterion on the attended dimension and the other 

corresponds to the variance of internal (perceptual and criterial) noise (𝜎2). A special case of the 

UC, the Optimal Unidimensional Classifier, assumes that participants use the unidimensional 

decision bound that maximizes accuracy. This special case has one free parameter (𝜎2) 

Conjunctive Classifier (CC). An alternative rule-based strategy is a conjunction rule 

involving separate decisions about the stimulus value on the two dimensions with the response 

assignment based on the outcome of these two decisions (Ashby & Gott, 1988). The CC assumes 

that the participant partitions the stimulus space into four regions. Based on an initial inspection 

of the data, two versions of the CC were fit to these data. One version assumes that individuals 

assigned a stimulus to category A if it was either low on diameter and low on angle or high on 

diameter and high on angle; otherwise the stimulus would be assigned to category B. The other 

version assumes that individuals assigned a stimulus to category B if it was high on diameter and 

low on angle or low on diameter and high on angle; otherwise the stimulus would be assigned to 

category B. An example of a conjunctive classifier is plotted in Figure 1 (solid black lines). The 

CC has three free parameters: the decision criteria on the two dimensions and a common value 

of 𝜎2 for the two dimensions.  

Information-Integration Models 

The Linear Classifier (LC). This model assumes that two linear decision boundaries 

partition the stimulus space into four regions (see Figure 1 for an example). The LC differs from 

the CC in that the LC does not assume decisional selective-attention (Ashby & Townsend, 1986). 

This produces an information-integration decision strategy because it requires linear integration 

of the perceived values on the stimulus dimensions prior to invoking any decision processes. An 

example of a linear classifier is plotted in Figure 1 (dashed black lines)The LC assumed two linear 

decision bounds of opposite slope (five parameters, slope and intercept of each linear bound and 

a common value of 𝜎2). 
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The Minimum Distance Classifier (MDC). This model assumes that there are a number of 

units representing a low-resolution map of the stimulus space (Ashby & Waldron, 1999; Ashby, 

Waldron, Lee, & Berkman, 2001; Maddox, Filoteo, Hejl, & Ing, 2004). On each trial, the participant 

determines which unit is closest to the perceived stimulus and produces the associated response. 

The version of the MDC tested here assumes four units because the category structures were 

generated from two multivariate normal distributions. Because the location of one of the units can 

be fixed, and because a uniform expansion or contraction of the space will not affect the location 

of the minimum-distance decision bounds, the MDC has six free parameters (five determining the 

location of the units and 𝜎2). 

Random Responder Models 

Equal Response Frequency (ERF). This model assumes that participants randomly assign 

stimuli to the two response frequencies in a manner that preserves the category base rates (i.e., 

50% of the stimuli in each category). This model has no free parameters. 

Biased Response Frequency (BRF). This model assumes that participants randomly 

assign stimuli to the two response frequencies in a manner that matches the participant’s 

categorization response frequencies. This model has one free parameter, the proportion of stimuli 

in category A. Although the ERF and BRF are assumed to be consistent with guessing, these 

models would also likely provide the best account of participants that frequently shift to very 

different strategies. 

Model Fitting  

The model parameters were estimated using maximum likelihood (Ashby, 1992b; Wickens, 

1982) and the goodness-of-fit statistic was 

BIC = r lnN - 2lnL, 
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where N is the sample size, r is the number of free parameters, and L is the likelihood of 

the model given the data (Schwarz, 1978). The BIC statistic penalizes a model for poor fit and for 

extra free parameters. To find the best model among a set of competitors, one simply computes 

a BIC value for each model, and then chooses the model with the smallest BIC. 
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Figure 1. (Top) Example displays for the two training methodologies. (Bottom) Rule-based category 
structure used in Experiments 1 and 3. Category A (crosses) and B (circles) stimuli used during the training 
phase. The insets are example stimuli. The solid black boundaries represent the optimal conjunctive decision 

strategy. The dashed black boundaries represent an alternative decision strategy (see text for details). 
Stimuli used during the test phase are plotted as filled red circles. Probe stimuli used during the final block 

of training are plotted as blue squares. See text for details. (Color figure online). 
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Figure 2. Training performance in the classification (proportion correct) and inference (correlation between 
the given and produced stimulus values) conditions of Experiment 1. 
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Figure 3. Performance on the inference task during the test phase (Left). Note that the diameter-angle 
correlations from category B are multiplied by -1 prior to averaging with the diameter-angle correlations 
from category A, thus positive values suggest learning of the within-category correlations. Relationship 
between learning during training and test phase performance in the classification (middle, r = .57) and 

inference (right, r = .62) conditions. The grey area represent a 95% confidence interval. 
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Figure 4. Conjunctive category structure used in Experiment 2. Category A (crosses) and B (circles) stimuli 
used during the training phase. Stimuli used during the test phase are plotted as filled red circles. Probe 

stimuli used during the final block of training are plotted as blue squares. (Color figure online). 
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Figure 5. Training performance in the classification and inference conditions of Experiment 2. 

Page 43 of 46 Attention, Perception, & Psychophysics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 6. (Example display for the inference training methodology. (Color figure online). 
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Figure 7. Training performance in the Classification and (forced-choice) Inference conditions of Experiment 
3. 
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Figure 8. Performance on the inference task during the test phase (Left). Note that positive values suggest 
learning of the within-category correlations. Relationship between learning during training and test phase 

performance in the classification (r = .47) (Middle) and inference (r = .67) conditions. Note that the 
diameter-angle correlations from category B are multiplied by -1 prior to averaging with the diameter-angle 

correlations from category A. The grey bars represent a 95% confidence interval. 
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