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Abstract 

Cognitive effort-based decision-making typically focuses on how much effort a person 

chooses to invest in a given action. Past experiments follow the assumption that monetary means 

and cognitive demands influence effort investment. However, motivation can influence 

behaviors beyond these factors, leaving open the question as to how can individual tasks 

motivate effort? Using two experiments, this study investigated how different elements of task 

designs can contribute to preferences that are related to the costs of performing an action and the 

rewards of monetary incentives. The results of this study suggest that preferences for an option 

can be influenced by various task-related factors such as the cognitive components required to 

complete a task (e.g., motor- or memory-related), how demanding the options are relative to each 

other (as determined by the number of elements to be manipulated in the task), and how much 

reward is available after task completion. In some cases, task designs could explain decision-

making tendencies better than monetary reward or demand levels. These findings have 

significant implications for understanding how intrinsic motivation affects preferences based on 

the requirements of a task that can be unrelated to ability.  

Keywords: Cognitive effort-based decision-making, task preferences, demand preferences, 

capability, incentives 
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Unraveling the Influence of Task Designs and Intrinsic Motivation in Effort-based 

Decision-Making 

Intrinsic motivation is often acknowledged for driving individual differences in how and 

when someone chooses to perform an effort action (e.g., Ryan & Deci, 2000; Oudeyer et al., 

2016; 2018). These motivations are said to differ in many ways from extrinsic ones in that people 

who are considered intrinsically motivated find reward sources internally, with the reward 

coming from the experience of increasing one’s knowledge and skills in a task or knowledge set 

(Oudeyer, et al., 2016), to relieving boredom (Agrawal et al., 2021), to motivating long-term 

extrinsic rewards by tackling more achievable actions that may not immediately lead to theses 

rewards. However, while the importance of these internal motivations appears to be necessary to 

evolution (Berlyne, 1960) and learning in general (Aubret et al., 2023; Oudeyer et al., 2018), less 

is known about how highly intrinsically motivated people experience these internal rewards.  

Theories of effort investment in decision-making suggest that individual differences in 

seeking out cognitively challenging tasks can be explained by differences in cognitive abilities 

(Agrawal et al., 2022; Hardy et al., 2019; Westbrook & Braver, 2015). Resource-oriented models 

assume that decision-makers use similar strategies when making effort-based decisions, and that 

these decisions are primarily driven by difference in the demand costs they experience rather 

than differences in motivation (e.g., Botvinick et al., 2009; Westbrook et al., 2013; Rangel et al., 

2008). In this view, these theories complement economical models of decision-making which 

state that ability can explain the variance in effort investment because higher-performing 

individuals have more cognitive “currency” to spend (Shah & Oppenheimer, 2008; Kool et al., 

2010). Specifically, when an action is too demanding, the action places the decision-maker in a 

state where they cannot succeed, whereas an action that is not demanding enough does not help 
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the decision-maker learn (Agrawal et al., 2022; Hardy et al., 2014; Hardy et al., 2019; Oudeyer, 

2016). Ability-cost theories suggest that actions are motivating because they place the decision-

maker in an optimal state of engagement. State-oriented and resource-oriented models explain 

intrinsic motivation reflecting individual differences in ability and demand costs. This 

explanation offers a testable prediction that people will pursue actions related to their ability to 

perform that action.  

Other theories of effort investment suggest that actions are selected with a higher focus on 

the external rewards. These theories propose that differences in reward sensitivity, or how likely 

someone is to be motivated by an external reward such as money or points, can further predict 

how likely a person is to perform an effortful action (Sandra & Otto, 2017). Under this 

viewpoint, external and internal rewards motivate people differently in that some are more 

sensitive to external reward like money while others are more sensitive to internal rewards such 

as learning in a way that complements other theories of intrinsic motivation (Ryan & Deci, 2000; 

Cacioppo & Petty (1982).These theories propose that, rather than differences in demand costs, 

differences in  cognitive effort-based decision-making are more strongly related to the source of 

the reward: individuals who are intrinsically motivated are more sensitive to internal rewards 

than those who appear more motivated by external rewards (Ryan & Deci, 2000; Oudeyer, 2018; 

Sandra & Otto, 2018).  

In an attempt to disentangle the role of cognitive ability and demand costs, Randez and Hélie 

(2024) investigated individual differences in demand preferences by tailoring each demand level 

to the person. The results suggest that controlling for differences in demand costs did not 

eliminate individual differences in demand preferences: some participants still indicated a 

preference for the high demand task. This is contrary to the prediction that people will generally 
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prefer options that are more cost efficient, and questions support for the idea that people who 

prefer high demanding tasks only show this preference because that option may be easier for 

them when compared to others (Kool et al., 2010; Botvinick et al., 2009). These results indicate 

that demand costs may not have been driving these choices. Instead, an exploratory analysis 

suggested that the type of task used across the experiments may have played an important role in 

influencing participants’ decisions.   

 However, comparing the influence of task designs can be challenging when trying to identify 

which features of a task can be considered attractive (Awasthi & Pratt, 1990; Richardson et al., 

2001). The bulk of empirical research on task attractiveness has primarily been conducted in 

industrial environments, where productivity and motivation can be incentive and performance-

based (e.g., Bonner & Sprinkle, 2002; Bailey & Fessler, 2011; Robinson & Farkas, 2021; Fessler, 

2003; Rafinda et al., 2021). Cognitive research has a lot of empirical evidence studying two 

components that often appear in various tasks: motor and memory skills (e.g., Hinze et al., 2009; 

Helie & Pizlo, 2022; Pizlo et al., 2013). Relating these empirical findings to more varied tasks, 

memory and motor movement appear to be useful to accomplish complex skills such as learning 

a musical instrument or gaining expertise (Richardson et al., 2001). While focusing on these two 

components can be limited in generalizing to the vast collection of tasks, using tasks that feature 

one or both of these factors can perhaps provide insight into effort-based decision-making. 

Specifically, comparing performance and decisions that are primarily motor-based or memory-

based can help provide support for these tasks being demand-oriented (i.e., do people prefer 

tasks that they are better at?) or more intrinsic to the task (i.e., they have a strong motor or 

memory-related preference but may not be related to their performance). 
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With this aim, the current article investigates whether individual differences in effort-based 

decision-making that cannot be fully explained by demand and reward factors are instead related 

to different types of tasks being offered. Similar to Randez & Helie (2024), this involves 

examining the influence of factors such as cognitive ability, demand levels, and reward 

sensitivity on task preferences. The results of these two experiments suggest that there may be 

intrinsic motivation related to the task designs which support learning-oriented frameworks 

(Ryan & Deci, 2000; Oudeyer, 2018): People may seek out actions they find enjoyable to 

perform for their own sake. 

Experiment 1: Demand-Related Decisions 

Experiment 1 investigated whether individual differences in capability could predict choices 

among different task types. While answering why someone would choose an activity, such as 

playing a musical instrument or video game over another one would be challenging, this study 

instead attempted to compare how preferences are influenced by changes in different factors of 

similar tasks. With this aim, this study limited task designs to two dimensions: the number of 

task elements and the type of cognitive components required. As a result, six options were 

offered, including two demand levels of three cognitive tasks designed to be as visually similar 

as possible (described in the next section) to investigate whether participant’s performance 

predicted preference patterns among these task options. If participants primarily based 

preferences for options based on ability, then their choices among the six options should be 

predictable based on performance. If, however, choices are influenced by other task aspects, then 

participants should demonstrate preferences for specific tasks that may be separable from their 

performance on that task.  

Methods 
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Participants 

One hundred undergraduates from Purdue University were granted course credits for 

participation. All participants were enrolled in an undergraduate introduction to psychology 

course and were at least 18 years old. Participants provided written consent, and the Purdue 

University Institutional Review Board approved the experiment. Two participants were excluded 

due to computer malfunctioning issues, leaving the total sample size at 98. A priori power 

analysis for a 2 (demand level) by 3 (task type) within-subject ANOVA calculated the need for at 

least 83 participants to achieve a power of .80, assuming similar group differences among task 

accuracy found in pilot studies, with alpha at .05 and an effect size of Cohen’s d = .76.  

Task Options 

This experiment was programmed using PsychoPy3 (Pierce et al., 2019). Stimuli were 

presented across a 21-inch monitor (1920 × 1080 resolution), and responses were recorded using 

a standard keyboard. Stimuli were presented across a visual angle of 14.9° with a height of 5 

inches and a width of 3 inches.  

The tasks presented were designed to be as visually similar in presentation as possible, with 

the main difference being the cognitive requirements of the participants. For the type of cognitive 

components, this experiment used two one-component tasks that required primarily a motor or a 

memory component. A two-component task was also created, which required both a memory and 

a motor component, referred to as the “hybrid task.” Pilot testing was done to select the number 

of elements in each task to achieve a relatively similar target performance across participants 

(60% accuracy for the high-demand options and 80% for the low-demand options). Elements 
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here were the number of squares within each task component that the participants had to 

memorize or respond to.  

Same-Different “Memory” Task. This task was designed to require memory cognitive 

components. Participants saw four vertical black lines on a gray screen with a pattern of squares 

on the lines. The number of squares for the low-demand option was six squares, and 11 squares 

for the high-demand option. Participants were given 2 seconds to memorize the pattern, after 

which they saw a masking screen covering the four lines' area (6” x 6.5”) for 1.5 seconds before 

they were shown the four lines with the same number of squares on the lines (Figure 1). 

Participants were instructed to press “f” if this second pattern matched the first pattern and “j” if 

not. There was a 50% chance of the second pattern being the same and a 50% chance that the 

second pattern swapped positions of two squares from the first pattern. Feedback was given near 

the top of the screen as either “correct” or “incorrect” and remained on the screen during the 

intertrial interval (ITI) of 1.5 seconds. 

Figure 1 

Example Trial of the Memory Task 
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Note. This figure shows the three parts of a trial in which the first pattern is presented (left), followed by a 

masking screen (middle), and then a second pattern is presented (right). 

“Motor”-Perception Task. The Motor task had a similar setup to the memory task: four 

vertical black lines with four squares in the low-demand option and 6 in the high-demand option. 

Below each line were the letters d, f, j, and k, respectively. Participants saw a countdown timer 

above the four lines starting from 3 to 1. After 1, the word “Go” appeared, and the squares turned 

green one at a time from the bottom to the top of the screen (Figure 2). Only one box was green 

at any given moment, and the participant was instructed to press the key associated with the lit 

box before the next box turned green. The total duration for both high- and low-demand levels 

was 3 seconds, so high-demand trials required faster button pressing. The intertrial timing was 

set to 1.5 seconds, in which the word “correct” or “incorrect” appeared at the top of the screen 

until the subsequent trial began. 

Figure 2 

Example trial of the Motor task 
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Note. In the figure above, from left to right, participants saw a pattern of squares and a timer 

starting from 3 to 1. When the timer reached 1, the word “Go” appeared, and participants were 

instructed to strike the key that matched the letter below the green box before the next square 

turned green. 

Spatial/Working Memory “Hybrid” Task. The Hybrid task showed four lines in the center 

of the screen and used the same visual display setup as the previous two tasks. The number of 

squares in the low-demand option was 4, and 6 in the high-demand option. Like the memory 

task, participants were given 3 seconds to memorize the pattern in the order of appearance as the 

squares appeared from bottom to top, followed by a masking screen for 2 seconds. Participants 

then saw four black lines, each with a letter below them (d, f, j, and k, respectively). They were 

expected to recreate the square pattern from memory within 1.5 seconds after viewing a mask for 

2 seconds (Figure 3). As a result, similar to the motor task, high-demanding trial required faster 

button pressing. 

Figure 3 

Example trial of the spatial memory hybrid task. 
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Note. Participants were instructed to memorize patterns by order of appearance and recreate the 

patterns by memory after seeing a mask. 

 Feedback was presented in two forms: whenever a key was pressed, the square for that 

keystroke appeared in green if it was correct or black if the key was incorrect, and the word 

“correct” or “incorrect” remained on the screen during the 1.5-second intertrial interval after the 

last button was pressed. If a key was incorrect, the trial continued, and the participants could 

choose at their discretion whether to complete the trial—once an incorrect key was pressed or 

trial time ran out, that trial was marked as incorrect. 

Procedure 

Tasks and demand levels were presented consecutively for all participants. For each task, the 

low-demand version was presented as “Task”.1 and the high-demand as “Task”.2; the order of 

tasks was as follows: Same-Different “Memory” task, “Motor” task, and Spatial/Working 
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Memory “Hybrid” task. Participants were shown an example trial of each task they were to 

perform before performing practice trials. For the memory task, they were instructed that their 

accuracy was binary—either they recognized the pattern or not. For the motor task, they were 

instructed that both timing and accuracy were important. For the working memory task, they 

were instructed to complete the trial from bottom to top (in order of appearance) to get the trial 

correct. Participants performed 15 trials in each block, and this performance was used to build 

the demand-related models (described below). After this exposure phase, participants entered a 

choice phase in which each combination of task options was presented two at a time, six times 

each, for a total of 90 choices. Each option pair was randomized in order of presentation, with 

each combination being seen once before repeating option pairs. Participants were allowed to 

freely choose which options they wanted. Since preferences can be related to the initial exposure 

to a task (Bonner & Sprinkle, 2002; Bandura, 1997), the participants were not required to 

perform each task choice and only had to perform 13% of their choice in which they completed 

10 trials of the task selected. This percentage allowed for the experiment to be run within an hour 

to meet the credit requirements for participants. 

Data Analyses 

Modeling Criterion. This experiment utilized the QTEST software to identify qualitative 

patterns of choices. QTEST is a software that runs a non-parametric statistical test that allows for 

individual testing of decision-making hypotheses for pairwise options and then comparing these 

response patterns against a set of competing models [Regenwetter et al., 2014; 

(https://regenwetterlab.web.illinois.edu/qtest/)]. Using this software, 12 models were constructed 

(6 demand-related and 6 task-related models) that represent 12 different ideal patterns of 

responses a person would produce if their preferences were based on demand-related and task-
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related biases (see the Appendix for details). This software allows for comparing these models 

using Bayes Factor statistics (Kass & Raftery, 1995) to explore individual demand preference 

patterns. The following models tested whether participants showed a preference associated with 

their performance (Demand-related models) or whether participants showed a task preference 

(Task-related models).  

We used two criteria when selecting the best-fit model for a participant: 1) the Bayes Factor 

had to be over 3.12 to be considered substantial evidence [based on the Kass & Raftery (1995) 

strength of evidence table] and 2) if two or more models fit the criterion 1, the ratio between the 

best-fitting model and the second-best fitting model had to be above 3.12. This would indicate 

that while two different models fit the data well, there was substantially more evidence for one 

model over the other. Based on the QTEST results, participant preferences were classified as: 1) 

demand-related, 2) task-driven, or 3) no best-fitting model. These scenarios were considered to 

support the difference in motivation between demand-related (1) and task-related preferences (2) 

or based on another (untested) dimension (3). 

Demand-Related Models. Six models were created using individual performances in the six task 

options. Three models were built to capture two possible motivations: 1) those who seek to 

conserve effort (Demand Avoidant; DA) (Kool et al., 2010) and 2) those who instead seek out 

challenges (Challenge-Seeker; CS) (Ryan & Deci, 2000). These models mirror each other, 

representing similar decision strategies. Model CS represents ideal responses from challenge-

seeking participants in that these participants prefer an option based on how challenging that 

option is, as inferred by lower performance. Model DA represented ideal responses from a 

cognitive miser or one who preferred options in which they performed best. 
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Previous research has suggested that participants use heuristics to make decisions between 

options—that is, when given a choice, they will not only choose options based on demand levels, 

but the strategies participants use to make these decisions are also generalized (e.g., Cooper-

Martin, 1994; Pizlo & Stefanov, 2013). The three models in each category were broken down 

into the following: 1) performances in all options were considered against each other, 2) 

performance in low-demand options were primarily driving preferences, or 3) performances in 

high-demand options primarily drove preferences. 

Task Models. Six models were additionally created, ranking the three tasks in all possible 

combinations. These models allowed for comparing task preferences that were not overtly related 

to the participant’s performance. For example, one may always choose the memory task, 

regardless of how well or poorly they performed in that task. These six models are every 

arrangement of possible task preference combinations. It is important to note that, unlike the 

demand-related models, these 6 task models were the same for all participants since these models 

were not dependent on specific abilities. 

Data Availability 

 Data and analysis code are available at 

https://osf.io/657qr/?view_only=4ed67b50e5aa44e0b0e58b3e1fd06669  

Results 

Accuracy  

 Practice accuracy was analyzed to investigate further the interaction between performance 

and preferences (Figure 4). A 2 (high/low demand level) by 3 (task type) within-subjects 

ANOVA showed significant main effects of task type, F(2,166)=22.459, p<.01, ηp
2 = 0.079, a 

https://osf.io/657qr/?view_only=4ed67b50e5aa44e0b0e58b3e1fd06669
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significant main effect of levels, F(1,83)=208.174, p <.01, ηp
2 = 0.248, and a significant 

interaction, F(1.82, 151)=28.281, p < .01, ηp
2 =0 .064, between task types and levels. Differences 

in demand levels in each task were compared in order to ensure that the high-demand version of 

each task had lower accuracy than the corresponding low-demand version. For the Motor task, 

the high-demand (M=0.757, SE=0.042) was significantly different from the low-demand level 

(M=0.883, SE=0.033), t(97)=29.59, p <.01, d = 0.589). For the Memory task, the high-demand 

(M=0.709, SE=0.024) was significantly different than the low-demand level (M=0.837, 

SE=0.031), t(97)=35.38, p<.01, d = 0.963). Lastly, the high-demand accuracy in the Hybrid task 

(M=0.625, SE=0.011) also had lower performance than the Hybrid low-demand level accuracy 

(M=0.842, SE=0.018). This difference is numerically larger than in the other two tasks, likely 

explaining the interaction. 

Figure 4 

Practice Accuracy Averages 
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Note. The figure depicts the average practice accuracy and bars represent standard error for 

Experiment 1.  

 Decisions 

 Demand-related and task-related models were compared. Fifty participants made choices that 

best fit one of these twelve models. For the demand-related models, 21 participants made choices 

consistent with their performance on each option during the exposure phase (Figure 5A). 

Twenty-nine participants indicated that they had a rank over preference based on task but not 

necessarily related to performance during their exposure phase (Figure 5B).  
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Figure 5 

Participant Best-fit Models 

A. Participants best fit by a demand-related model 

 

 

Note. The figure above shows two types of categorizations: performance-oriented (A) and task-

oriented (B). (A) depicts three dimensions of performance that participants can rank their 

preferences on: All are participants who considered each task at each demand level in relation to 

their performance to establish their preference ranking, High are those who considered their 



18 
 

 

performance in the high demand levels only to establish their preference ranking, and Low are 

those who considered their low demand performance only to establish their preference ranking. 

Low-to-high represents the rank order of preferences: in this case, participants will prefer options 

they score higher on over those they score lower on (i.e., options that are lower demand for 

them). High-to-low are those who prefer options on which they score lower and thus may 

experience higher demand. (B) represents models that rank-order the three tasks: for instance, W-

M-H would indicate that the participant preferred the memory over the motor over the hybrid 

task.  

To illustrate how the QTEST models allow for a more fine-grained analysis of participants’ 

choices, two participants were compared. One participant indicated a task-oriented preference 

and the second participant indicated an ability-oriented preference. Out of 72 options, the 

number of times a task was chosen over another was taken, and both participants showed similar 

rank-order preferences. The ability-oriented participant chose the hybrid task 38 times, the motor 

task 22 times, and the memory task 12 times when the respective tasks were offered over the 

other two tasks. The task-oriented participants had a similar set of choices: 47 for the Hybrid 

task, 18 for the motor task, and 6 for the memory task. Taking these proportions of choices, both 

participants indicate a rank order task preference of hybrid, then motor, then memory. However, 

these participants differed in the order of performance on these tasks. The ability-oriented 

participants indicated they made decisions based on one of the high-demand dimensions models, 

and their performance for the tasks were as follows, in order of least to greatest: Hybrid 45%, 

Motor 68%, and Memory 73%. On the other hand, the task-oriented participant had the 

following ordered performance: Hybrid 54%, Memory 68%, and Motor 73%. This is one 

example of how ability can influence one participant, but its influence on another is unclear.  

One limitation of using the QTEST software however is that task preferences needed to be 

ranked in an order that included all tasks (to provide a sufficient number of constraints) and did 

not include the possibility that preferences could be biased for or towards one task option (thus 

ignoring the other two). The following is a breakdown of participants who did not fit one of the 
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twelve models but whose choices indicated that they either mostly preferred or avoided one 

option and were potentially agnostic toward the other two options. A Bayes Factor analysis (Kass 

& Raftery, 1995) was conducted to isolate task preferences from random noise. As these results 

were not predicted, they should be considered exploratory. This analysis indicated that 8 

participants demonstrated a bias related to the hybrid option (four for and four against). In 

comparison, 12 participants indicated a preference for the motor task and four an aversion for the 

memory task (Figure 6).  

Figure 6 

Single-Task Biases from the No Best Fit Group 

 

 

Note. The figure shows the number of participants who indicated a single-task preference.  

Discussion 
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This experiment investigated how preferences were affected by task designs that varied in 

two forms: 1) the number of elements (low versus high demand), and 2) component types (motor 

or memory). While some participant data were not best fit by any of the 12 models, evidence still 

suggested that the majority of participants’ decisions were related to specific task offerings. Only 

4 participants produced responses that did not differ from a random model. It is also noteworthy 

that the lower accuracy in the hybrid task (and the larger difference between the difficulty levels) 

did not result in a particular aversion toward that task, with preferences similar to the other two 

tasks. Given that participants needed to have a fully completed trial in the memory and hybrid 

task, this could have led to ‘quitting early’ in that the participant stopped investing effort once 

they realized they made a mistake. This could account for the lower accuracy seen in the higher 

demanding hybrid task. However, this may add support for the idea that decision strategies can 

be influenced by factors other than demand-related ones. When comparing task components, 

these results provided evidence suggesting that motor and memory components were favored 

differently depending on the individual in way that is not overtly related to that individual’s 

ability.  

Experiment 2: Incentive-Related Decisions 

The results of Experiment 1 suggested that the type of task being offered can influence 

decisions beyond the relative demands of the task.  This second experiment expands on these 

findings by including a reward-sensitivity factor in addition to various demand levels and task 

designs. Specifically, this second experiment investigated the effects of task components in 

monetary and demand-related contexts. Traditional paradigms comparing decisions in these 

incentive conditions typically raised the demand level and the monetary amount simultaneously, 

assuming these factors affect choices in a particular direction (away from high demand and 
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toward high reward) (e.g., Westbrook et al., 2013). These economic paradigms suggest that 

participants will avoid more demanding options and seek more monetarily rewarding ones. 

However, one limitation of this paradigm is that it cannot answer whether people motivated away 

by higher demands are more motivated by monetary incentives (Westbrook et al., 2013).  

Experiment 2 compared a demand-related to a reward-related condition to investigate 

whether preference for low demand and high reward were influenced differently when offered 

two tasks that differed in design. The main research question being investigated was whether 

participants made similar demand-related and reward-related decisions, and whether task designs 

could explain these decisions. If participants primarily make economic decisions regarding 

cognitive resources and monetary gains, then participants who make more demand-avoidant 

decisions should make higher-rewarding decisions, regardless of the task being offered. If task 

designs influence decisions or a person is making non-economic decision (e.g., preferring less 

money or higher demanding options), then a preferred task should be selected even when it is 

offered at a higher demand level or lower monetary reward.  

The same tasks as in Experiment 1 were used to facilitate comparison. However, the structure 

of these tasks made it difficult to scale the difficulty of the Hybrid task to match the difficulty of 

the motor or memory task. Pilot studies suggest that adding a square increased the difficulty in 

the Hybrid task more dramatically than adding a square in either memory or motor task. This led 

to assigning the hybrid task as a primary task and the motor and memory tasks as secondary 

tasks. The aims of this current experiment were to compare how incentive conditions (reward or 

demand) influenced participants within-subjects while using the Hybrid and secondary tasks to 

allow for an additional task comparison. While this limited our ability to compare how 
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participants chose among all three tasks, this design allow for the comparison of the motor and 

memory tasks in a between-subjects design and the incentive conditions within participant. 

Methods 

Participants 

One hundred and forty-seven students were recruited using the Purdue University 

undergraduate pool. All participants were over 18 years-old and enrolled into an undergraduate 

introduction to psychology course. They received three credits toward course completion and a 

small monetary amount (up to $5.00) based on choices made in the experiment. This study used 

a 2 (between task type: working memory or motor) x 2 (within adjustment: incentive or demand) 

repeated measures mixed-subject design. A priori power analysis using G*Power 3.1.9.4 (Faul et 

al., 2007) was run for a mixed ANOVA within-between interactions to investigate task accuracy. 

This analysis indicated that at least 64 total participants would be needed for a power of .80 and 

an alpha of .05. Participants provided written consent, and the Purdue University Institutional 

Review Board approved the experiment. This experiment was pre-registered with the Open 

Science Foundation (https://osf.io/23exs/).  

Materials and Procedures 

This experiment was programmed using PsychoPy3 (Pierce et al., 2019). Stimuli were 

presented across a 21-inch monitor (1920 × 1080 resolution), and responses were recorded using 

a standard keyboard. Stimuli were presented across a visual angle of 14.9° with a height of 5 

inches and a width of 3 inches.  

Task Options 
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This experiment used the same tasks as Experiment 1.  

Procedure 

The procedure included four phases: survey, practice, reward, and demand. It was conducted 

over one session, with the last two phases including either a reward or a demand condition, with 

the order of conditions counterbalanced. The first phase consisted of a 23-question survey; 18 

questions were from the Need for Cognition Scale (Cacioppo et al., 1948), which measures an 

individual’s tendency to enjoy cognitively engaging activities. The five remaining questions 

came from the behavioral activation system (BAS) reward responsiveness questionnaire (Carver 

& White, 1994), which measures a participant’s sensitivity to reward.  

The participants were randomly assigned to the memory or motor task condition. Condition 

assignment determined the participant’s secondary task. Participants in each condition were 

shown instructions for their assigned secondary task before performing 25 practice trials of their 

assigned secondary task. Next, participants in both conditions were shown instructions for the 

Hybrid task (the hybrid task is the primary task for both conditions) and performed 25 practice 

trials. After this, participants were asked to select between performing the hybrid task or their 

assigned secondary task. In the reward phase, francs were offered for each task option. In the 

demand condition, this number instead reflected the number of squares within the task options. 

To indicate a task selection, the key “c” was positioned below the left option and “n” below the 

right option. A set of choices included six selections, in which participants were randomly 

assigned to perform 3 to 5 of these selections (Figure 7). If a block was selected to be skipped, 

the participant saw the screen “Recorded! Please choose again!” Otherwise, the participants 

performed ten trials of the task they selected. After the end of the session, participants were paid 
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depending on their performance for the reward condition and received course credit for 

participating. 

Figure 7 

Example of a set of choices in the reward phase 

 

Note. The figure demonstrates one set of choices in the reward condition. The initial task was 

offered at 200 francs (level 6 in the demand condition) and then adjusted by the indicated 

amounts (by +/- 1 level in the demand condition for every adjustment). This set was repeated 

three times before switching to the following incentive condition. 

Reward Phase. The reward phase used a paradigm similar to the one used in Westbrook, Kester, 

and Braver (2013). In this paradigm, one option was offered at a set number of francs while the 

other fluctuated. In this paradigm, the Hybrid task remained the same amount while the other 

option was adjusted based on the previous decision.  

Currency was offered as “francs” to help disguise that the bonus compensation depended on 

their choices during this condition. The initial offer for each option was 200 francs each, after 

which the option for the secondary task adjustment began at 50 francs (increase if the Hybrid 

task was chosen, decreased if the secondary task was). Adjustments were picked to closely 
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mimic Westbrook et al., 2013 in that they decreased as follows: 50, 25, 13, 8, 4, and 1. After the 

sixth decision, the options reset to the initial offer states (200 francs), and adjustments began 

again at 50. Decisions “francs,” were added up to place participants in one of five payment 

categories, each corresponding with a dollar amount: $1.00 – less than 2500 francs; $2.00 – 

between 2501 and 3200; $3.00 – between 3201 and 3900; $4.00 –3901 and 4600; and $5.00 – 

above 4601.  

Demand Phase. In the Demand phase, the Hybrid task with four squares was scaled to the 

difficulty level equal to the seven squares in the Motor and Memory tasks. Seven squares were 

chosen instead of six squares (as seen in E1) because this allows for the scaling design of the 

demand phase. Because each choice can decrease the demand level (i.e., remove a square), seven 

squares allows for the lowest demand level that a participant can be offered to be 1. Pilot data 

suggested that the difference in performance for both motor and memory tasks were similar 

across tasks when increasing by one square. While the Hybrid task is offered at four squares and 

the secondary task starts at seven squares, the choices on the screen were shown as “Hybrid: 

level 6” and “Motor/Memory: level 6) to try to minimize any biases that the different number of 

squares might have on the participant’s decisions. Past pilot studies have suggested that the 

Motor and Memory tasks increase in similar difficulty from adding or subtracting one square. 

This data also suggests that participants can achieve up to 12 squares before performance reaches 

a floor effect. Similar to the Reward phase, the Demand phase had six options between the 

Hybrid and the secondary task, and the secondary task fluctuated by the number of squares in the 

task performed. Every time the secondary task was selected, the number of squares increased by 

1 square; if the Hybrid task was selected, the secondary task decreased by 1 square. 

Data Availability 
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 Data and analysis code are available at 

https://osf.io/657qr/?view_only=4ed67b50e5aa44e0b0e58b3e1fd06669  

Results 

Performance 

Practice Accuracy. Half the participants saw the motor task as their secondary task, with the 

other half performing the memory task. A 2 (between, secondary task condition: motor vs 

memory) x 2 (within, task type: hybrid vs secondary task) mixed ANOVA indicated that there 

was a significant effect of task type, F(1,145) = 21.693, p <.04, ηp
2 . Accuracy in the secondary 

task (M = 0.829, SE = 0.013) was significantly higher than in the hybrid task (M = 0.752, SE = 

0.015) There was not a significant main effect of the secondary task in that participants in the 

motor task condition (M=.764, SE=0.02) performed similarly to those in the memory task 

condition (M=0.742, SE=0.22), F(1,145)=1.281, p =.260, ηp
2 = .006), nor a significant 

interaction between task type and secondary condition, F(1,145)=1.686, p =.196, ηp
2 = .004). 

Reward Phase Accuracy. Participants performed only the selected tasks they chose, and fifteen 

participants’ data were removed for not performing one of the tasks in either one or both 

incentive conditions. A mixed-effect two (selected task: Hybrid/secondary, within-subject) by 

two (secondary task condition: motor/memory, between-subject) ANOVA  indicated that there 

was a significant effect of the selected task, F(1,136)=62.310, p <.001, ηp
2 = 0.084 in that the 

secondary tasks (M=0.822, SE=0.010) showed lower accuracy than the Hybrid task (M=0.888, 

SE=0.009) (Figure 8). There was no significant difference between the secondary task 

conditions, F(1,135)=.806, p=0.371, ηp
2 =0.005, nor a significant interaction, F(1,135)=2.699, 

p=0.103, ηp
2 =0.004. A Pearson’s correlation was done between accuracy in tasks and the number 

https://osf.io/657qr/?view_only=4ed67b50e5aa44e0b0e58b3e1fd06669
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of times that task was chosen but was not significant for either the hybrid (r=.-.043, t(140)=-

0.513, p=.608) or the secondary tasks (r=.126, t(140)=1.498, p=.136).   

Figure 8 

Boxplot of Accuracy in the Reward Phase 

 

Note. Figure shows the boxplot of participants accuracy for the participants in the reward phase 

for each task.  

Demand Phase Accuracy. The motor task demand levels ranged from 1 square (n=2, M= .95, 

SD = .071) to 11 squares (n=8, M = .013, SD = 0.35). The memory task demand levels ranged 

from 1 square (n = 12, M = .725, SD = 0.293) to 11 squares (n=20, M = .115, SD = .115). 

However, not all levels from each task were selected, so a mixed-effect ANOVA could not be run 

for the demand phase due to empty cells in the different demand levels. Instead, a regression line 

was fit for the secondary tasks (Figure 9). For the memory task, increases in demand offers were 
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significantly related to decreases in accuracy, b = -0.027, t(401) = -6.939, p < .01, d = 0.327. For 

the motor task, increases in demand offer were also significantly related to decreases in accuracy, 

b = -0.109, t(388)=-18.80, p <.01, d= 0.690. These regressions were compared against each other 

in a Fisher’s Z correlation test, which showed a significant difference between secondary task 

conditions, z=7.135, p <.001, d = 1255.136 (two tails). These results suggest that the demand 

levels for the motor task were associated with a steeper decrease in performance per additional 

square as the demand level increased compared to the memory task. Specifically, the motor task 

had about a 10% decrease in accuracy per additional square. In contrast, the memory task had 

about a 3% decrease in accuracy.  

Figure 9 

Secondary Task Accuracy in Demand Phase 

 



29 
 

 

Note. Figure represents the average accuracy for the secondary (motor, memory) tasks in the 

demand phase for each demand level. Bars represent standard errors.  

The hybrid task accuracy was statistically different between the two conditions, t(281.65)=-

.2.9642, p <.01, with accuracy in the memory condition (M=.864, SE=.010) being higher when 

compared to the motor condition (M=.822, SE=.010). However, the number of choices for the 

Hybrid task was not statistically significant between the two task conditions t(272.93)=-0.521, p 

= .603). These results indicate that while performance was different, we found no evidence that 

this difference affected the decisions made for or against the Hybrid task.  

Decisions 

The final scores were transformed into z-scores to allow for easier comparison as lower 

demanding options incentive-wise may be similar to high monetary amounts and vice versa. 

While the demand scale was between 1-11 and the monetary scores were in the hundreds, the 

distribution of scores should follow similar logic (ending scores close to starting scores indicates 

task switching, while extreme scores in either direction indicates a bias). Z-scores allow for 

putting final demand and reward scores on a commensurable scale for direct comparison. For 

instance, if participants had a particularly low demand z-score, the participant chose the hybrid 

task when the secondary task was offered at a higher demand; likewise, a low reward z-score 

suggests that the participant selected the hybrid task for less money. Higher scores, on the other 

hand, would indicate that the secondary task was chosen when the hybrid task was offered for 

higher demand or less money.   

Each set's final offerings in the secondary task for the sixth decision were averaged 

separately in each incentive condition. These scores were transformed into z-scores using the 
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between-subject mean and standard deviation for each set of scores. A Pearson’s correlation 

between z-scores revealed a significant correlation (r = -.472, p <.001, t = -6.3435). Participants 

with a higher final score in the reward condition typically had a lower demand final score. This 

result has two interpretations: In looking at incentive conditions only, the interpretation is that 

participants who are more willing to perform at higher demand levels are also less motivated by 

monetary means. The second interpretation is that these people instead had a preference for the 

Hybrid condition. This interpretation would be because their choices for the Hybrid task were 

consistent in both phases (i.e., they chose the Hybrid task for lower reward offerings or for 

higher demand levels).  

The distribution of z-scores across both conditions shows that the reward phase had a wider 

range [-2.576, 2.138] than the demand phase [-1.883. 2.469] (Figure 8). That is, while there 

seems to be individual differences in how participants react in both phases, there may also be a 

general pattern of decisions made according to incentive type. The kurtosis of final answers was 

0.571 for the reward phase and -0.17 for the demand phase. Extreme z-scores suggest that 

participants tend to consistently select one task throughout a given choice set, while scores that 

center around zero indicate that participants tend to sample both tasks within a given choice set. 

These latter choices were likely more heavily impacted by incentive type and less by the task 

options themselves. This is due to the adjustment of the secondary condition, in that choices 

throughout the experiment change which options are more rewarding or less demanding. The 

kurtosis results indicate that more participants were affected by the monetary amounts in the 

reward phase than the demand levels in the demand phase.  

Figure 8 

Z-score Distribution of Final Offers 
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Note. The figures display the distribution of final z-score offerings. The reward phase (left) is 

scaled from left to right as lower rewards (they kept choosing a task even as the offer lowered) to 

higher rewards (they chose the task with the highest reward offer). The demand phase (right) was 

reversed to match the biased direction as the reward and is scaled from left to right as higher 

demand (they kept choosing a task even as the demand level increased) to low demand (they 

chose the task with the lowest demand offer). The demand phase scale was reversed to facilitate 

a direct comparison of the two panels. 

 

Questionnaire Results 

This study used two subjective scales: the Need for Cognition (NFC; Cacioppo & Petty, 

1982) scale and the reward responsiveness section of the Behavioral Activation System (BAS) 

scale (Carver & White, 1994). Cronbach’s alpha for the NFC consisted of 18 items (α = 0.969), 

and the BAS consisted of 5 items (α = 0.822). As expected, these results indicated high internal 

reliability. The results for the NFC scale (M=2.83; SD=0.56) indicated that participants were not 

particularly motivated for or against challenges. The results from the BAS scale (M=4.40, 

SD=0.51) suggested a high amount of sensitivity to reward among the participant sample.   
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One possibility is that the questionnaires included in the experiment would help account for 

some of the individual differences. However, Pearson’s correlation between the questionnaires 

and final z-scores of incentive phases did not indicate a significant relationship. The BAS score 

(r = .040, p=.628) and the NFC scores (r = -.007, p = .933) were not significant for the demand 

phase. The BAS score (r = -.056, p = .502) and the NFC scores (r = -.041, p = .627) were also 

not significant for the reward phase. This could be because this design was meant to compare 

how different tasks influence decisions under different effects of incentives. The NFC identifies 

individuals who seek out challenging pursuits, and the BAS scale considers those who are 

influenced by reward. This current design also adds to the motivation of different task types that 

may have a more confounding effect on decisions than those measured by these scales. 

Discussion 

Experiment 2 investigated the influence of task type in two incentive phases to investigate 

whether decisions differed between different incentives and whether task type can further 

influence decision-making. Complimentary to the results found in Experiment 1, these results 

suggested that performance in a task cannot predict a task preference in that the Hybrid task was 

selected despite showing relatively lower performances when compared to the secondary tasks. 

Decisions across both incentive types revealed that there is within-subject validity in that people 

who make decisions favoring the lower-demand options tend to make decisions favoring high-

rewarding options. However, there was a difference in incentive conditions in that more 

participants favored monetary-related options, whereas, in the demand condition, these 

preferences appeared to be influenced by task designs. Specifically, in the reward condition, 

more participants had final decision z-scores that indicated choices favoring incentive differences 

than compared to the demand phase. These results further indicate that effort-based decision-



33 
 

 

making can be influenced by task designs as well as the incentives of demand and monetary 

rewards.  

General Discussion 

This study investigated action selection in cognitive effort-based decision-making. Theories 

of intrinsic motivation suggest that actions can be selected based on their utility for longer-term 

overarching goals (Aubret et al., 2023), the influence that performing an action has on a current 

stage of relieving boredom or fatigue (Agrawal et a., 2022), or simply because performing the 

action itself can be motivating despite not being related overtly to a long-term reward (Oudeyer, 

2018). While the results of this study cannot completely rule out a current state-oriented 

hypothesis, these results do suggest that intrinsic motivation may be more strongly related to the 

action itself, rather than strictly how demanding the action is. Specifically, individual differences 

in effort investment appeared to be motivated by a myriad of factors such as the type of task 

being offered, performance-based factors, or external rewards such as money or points. 

Experiment 1 used a 2 (demand level) x 3 (task type) design to investigate task decisions that 

were related to performance. Results suggested that about 20% of participants showed a demand-

related pattern of decisions, 21% indicated a ranked-order task preference pattern, and 

exploratory analysis suggested an additional 24% may have been making decisions biased 

towards one of the three tasks. These results replicate past studies, which found that the majority 

of people 1) make decisions that are related to their performance levels and 2) are primarily 

demand-avoidant (i.e., they choose tasks in which they perform better). However, there were still 

participants who indicated that their demand preferences actually biased them to select tasks they 

performed worse in, supporting theories that some people can be intrinsically motivated to seek 

out challenging options (Cacioppo & Petty, 1982; Ryan & Deci, 2000; Pink, 2006). These results 
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suggest that performance and task types can influence participants in different ways. Experiment 

2 used a within-subjects design to compare how different types of incentives can influence 

decisions. The results suggested that most participants were similarly influenced by fluctuations 

to task demand (as evoked by adding or tasking away elements and response requirements to a 

task) and monetary amounts. Incentive conditions did differ slightly when it came to task 

preferences. Both tasks indicated that some participants were primarily motivated by the task 

options. However, more of these participants were willing to forgo an easier task than forgoing a 

higher monetary reward. This could indicate that demand-oriented decisions may interact more 

with task-oriented decisions than monetary ones.  

When comparing performance, there did not appear to be a strong relationship between 

performance and how strongly a participant preferred a particular task. These results suggest that 

demand levels or difficulty of a task may influence the willingness to select a task, and 

performance may then influence another aspect of decision-making, such as effort invested in 

completing the task after the task has been selected. This would complement theories such as 

task switching, which suggest that the decision to switch away from or select a new option may 

form its own demand (e.g., Monsell, 2003). This could explain why some participants persist 

with a given task option rather than an overall preference for a specific task. Together, these 

results suggest that task designs can reveal the various dimensions that decision makers make 

effort-based decisions. However, while these results emphasize individual differences in 

motivation for demand-related decisions, there is also a suggestion that these motivations may 

not be random. Instead, they suggest that how previous experiments defined demand and the 

weight they place on performance levels may be two of many factors that participants use when 

deciding to invest their cognitive resources, time, and effort into a given decision. The rest of this 
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discussion will be broken into three parts 1) viewing results through a resource-oriented lens, 2) 

exploring aspects of the tasks that could have influenced decisions, and 3) suggesting how these 

results support curiosity-driven and learning-oriented models of intrinsic motivation.  

Resource-oriented decisions suggest that there is an inherent rationale in which decision-

makers weigh the costs of performing an action against the benefits gained (e.g., Shah & 

Oppenheimer, 2008; Rangel et al., 2008). Traditionally, costs are associated with cognitive 

resource demands and benefits with some external reward such as money. However, recent 

theories suggest that motivations for internal rewards, such as those gained while satisfying 

curiosity or learning, may satisfy similar drives to external rewards (e.g., Mordirshanechi et al., 

2024). Some models suggest that internal states can influence decisions by placing the decision-

maker in an optimal state in which they seek out information or experiences that can further add 

to their current knowledge and skills while avoiding decisions that can lead to tasks that they 

cannot perform or are too easy (e.g., Agrawal et al., 2022). Other theories suggest that this 

motivation to seek out internally rewarding experiences may be related to the intrinsic 

motivation sought when decision-makers are in a sparse environment where external rewards 

may be hard to come by. The decision-maker must continue exploring their environment (Aubret 

et al., 2023). The participants in this study could have been making similar decisions among the 

different task types and demand levels offered. However, they may have used different decision 

aspects, such as performance, task type, last task selected, etc., because these aspects may affect 

various ways that they can be engaged. Some may have been engaged by the components (i.e., 

motor or memory) involved in the task, others may have used familiarity with a task, and others 

may have used incentives, task difficulty, and performance levels to guide this gauge of internal 

engagement.  
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Unfortunately, this study did not find evidence that a particular task component was favored 

over another. When comparing motor to memory to hybrid tasks, preferences for these tasks 

appeared to be differently motivated (i.e., some were selected more or particularly avoided). It 

did not seem to matter if the participant was tasked with memory, motor, or a combination of 

both components. However, preferences for these tasks were still seen across both experiments 

that were not overtly related to performance. A possible motivator for these results could be 

differences in previous experiences with component type. These tasks were novel to all 

participants, but participants had various experiences with past tasks that were motor-oriented or 

memory-oriented. The novelty of the task could have masked individual differences in 

performances on other memory or motor-oriented task types. Another possible reason for these 

results is that there might be sex differences in preferences. Future research could include sex as 

an independent variable and directly test how it affects preferences. It is possible that preferences 

can be differently affected by task demand or task components based on sex. 

However, the final motivation considered in this article is learning-oriented. The learning 

progress hypothesis theory suggests that people explore their environment and actions available 

to test and build upon an internal model they have of the world (Oudeyer, 2016). The author of 

this theory went on to suggest a curiosity-driven model of learning, which expands on this idea 

by suggesting that people use these new experiences to further their skill and knowledge to move 

the decision-maker to other areas (Oudeyer, 2018). Areas here are either literal in a given 

physical location or metaphorical in an area of an internal model, such as the decision-makers' 

knowledge structure of a given skill or topic. Given that all these tasks were novel to the 

participant, it could be a fair strategy to stick to one option and continue rather than bouncing 

between options. Like task-switching, this theory suggests a cost in taking on a new task not 
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experienced when sticking to a current task. However, this theory postulates that the cost is in the 

learning opportunity that sticking to one option can provide. Like state-dependent theories of 

engagement, learning-oriented theories could explain that participants use a current state, such as 

performance, to indicate that they may get better at it given enough time or that the task itself 

may not be worth the continued pursuit. Future studies could explore how increases in 

performance over time may be related to the decision to persist with a current task option over 

switching to another. 

Conclusion 

Studies of motivation readily acknowledge that motivation can influence effort-based 

decision making, but they primarily differ on what is motivating. Intrinsic motivation is related 

to the internal reward gained through performing actions rather than the motivation for the 

benefit gained after performing the action. This study supports this view by providing empirical 

evidence that tasks can be motivated outside of monetary means. Other theories suggest that 

demand-related aspects of tasks may be a primary motivator in that people will value a task 

depending on how well they can perform it. This study challenges this viewpoint by providing 

more variety in the demand selection, suggesting that performance may not be the only 

dimension a decision-maker values tasks on. However, this study does fall short when it comes 

to offering a satisfying explanation for why one task was preferred over another. Performance, 

demand levels (as manipulated by the responses required of the participant), and component type 

(motor, memory, both) all provided strong evidence of influence. Further, performance was 

measured here using their practice trials and did not account for changes in performance over 

time (i.e., learning). This limits the generalization for supporting learning-oriented models, and 

future directions could explore decisions and performance over time. In addition, it would be 
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beneficial to separate the motivations driven by task-switching demands from learning-oriented 

ones. Overall, this study supports the idea that people can be motivated by performing an action 

outside of the external reward that could be gained or by how well they can perform the task. 

This further supports theories of intrinsic motivation, which state that people can be internally 

motivated to seek out experiences or actions.  
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Appendix 

Experiment 1 used 12 different models based on the QTEST algorithm (Regenwetter et al., 

2014). The first set of six models evaluated different response patterns based on participants’ 

performances in each task and level. These models were built with two specific patterns in mind: 

demand-avoidance and challenge-seeking. These were constructed to explore different decision 

strategies based on performance. There are three primary types: 1) those based on overall 

performance (Table A1), 2) on performance in low-demand tasks only (Table A2), and 3) those 

based on high-demand tasks only (Table A3). It is important to note that these models were built 

individually for each participant since they precisely predict preferences based on their 

performances. 

Overall Performance-Based Models. 

These models did not consider differences among task types and instead weighed all six 

options by individual performance. Two models were built to capture two possible motivations: 

1) those who sought to conserve effort (Demand Avoidant (DA)) and 2) those who instead 

sought out challenges (Challenge-Seeker (CS)). These models mirror each other, representing 

similar decision strategies. Model CS represents ideal responses from challenge-seeking 

participants in that these participants preferred an option based on how challenging that option is, 

as inferred by lower performance. Model DA represents ideal responses from demand-avoidant 

participants in that higher ease of demand (i.e., higher performance) can increase how likely that 

person was to choose that option. Suppose the participant found the two options equal. In that 

case, there would be no clear preference for one choice over the other—that is, each time that 

option was presented, the probability of that participant picking one over the other would not be 

above chance. 
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To elaborate, one participant had the following accuracy for the tasks (one was coded for 

low-demand options and two was coded for high-demand options): Memory (1 - .82/ 2 - .69), 

Motor (1 - .82/ 2 - .69), and Hybrid (1 - .88/ 2 - .51). The model demand-avoidant model would 

predict that when faced with two options, the participant preferred options they had previously 

had higher accuracy in. The order would be Hybrid 1. Memory.1, Motor.1, Motor.2, Memory.2, 

then Hybrid.2. On the other hand, the challenge-seeking model would predict that participants 

instead reversed this order of task preferences and selected options they previously had a lower 

accuracy in. If two options had similar accuracy, then the prediction would be equal chance 

between the two options (i.e., if a participant had .82 in both Memory.1 and Motor.1).  

 

Table A1. Example of Models CS & DA built from a participant’s accuracy in the six options. 

Letters were assigned to each task (A: Memory.1; B: Memory.2; C: Motor.1, D: Motor.2; E: 

Hybrid.1; F: Hybrid.2). 



46 
 

 

Low/High-Demand Performance-Based Models.  

Previous research has suggested that participants use heuristics to make decisions between 

options—that is, when given a choice, they will not only choose options based on demand levels, 

but the strategies participants use to make these decisions are also generalized (e.g., Cooper-

Martin, 1994; Pizlo & Stefanov, 2013). In this case, the following four models were created to 

explore the possibility that participants’ preference for a task was based on one dimension of that 

task, specifically on their performance in either the low- or the high-demand version of a task.  

Low-Demand Performance-Based Models.  

The following two models only focus on performance in the low-demand task version (Table 

A2). These models predicted that preferences were based on the relationship along low-demand 

task options, not placing any weight on the high-demand versions. Model L: DA “Low: Demand-

Avoidant” predicted that participants would prefer task options in which they performed better in 

the low-demand version. For instance, if the low-demand memory option had higher accuracy 

than the low-demand motor option, these participants preferred the memory task over the motor 

task every time these tasks were offered against each other. The second model, L: CS “Low: 

Challenge-Seeking,” is the same as the first model in that task preferences are based on the low-

demand option. Instead of preferring options that they performed better than, these participants 

preferred options they found more challenging (i.e., have lower performance).  

 For example, using the previous participant data, these models predicted preferences based 

only on how the participant performed in the low-demand options (Memory.1 - .85, Motor.1 – 

82, Hybrid -.88). The low-demand version of these models predicated preferences for tasks in the 

following order: Hybrid, Memory, then Motor). The high-demand version of these tasks still 
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used these low-demand accuracy but suggested that preferences for these task options were in the 

reverse order: Motor, Memory, then Hybrid.  

 

Table A2. Examples of Models Low-Demand: CS & Low-Demand: DA  

High-Demand Performance-Based Models.  

These final two models predicted that task preference was also based on a heuristic, but this 

heuristic is focused on performance in the high-demand task versions (Table A3). Model H: CS 

“High: Challenge-Seeking” predicted a bias towards the high-demanding option across tasks. For 

example, if the memory task had lower accuracy than the motor task, participant would prefer 

that task over the memory task. The fourth model, H: DA “High: Demand-Avoidant,” predicted 

that task preference was based on the ease of the high-demanding task without weighing 

performance in the low-demand task options. 
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 Using the same participant example as before, these models predicted that performance in the 

high-demand options ordered preferences (Memory.2 - .74, Hybrid.2 - .55, Motor.2 - .69). The 

low-demand version of these models predicted the order of preference was as follows: Memory, 

Motor, then Hybrid. The high-demand version predicted the reverse order: Hybrid, Motor, then 

Memory. 

 

Table A3. Examples of Models High-Demand: CS & High-Demand: DA 

Task Models.  

The second set of six models tested whether task preferences could be ranked in order – 

regardless of performance (see Table A4). These models attempt 1) to investigate whether there 

was task-specific decision strategies and 2) to detangle whether these strategies were related to 

components specific to the tasks themselves. Rank ordering comparisons predict that there is a 

transitive property to task preferences. If a participant preferred task A over task B and task B 

over task C, they then preferred task A over task C. This transitive property defines a task 
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preference as consistent across three tasks or whether decisions are chosen randomly. It is 

important to note that, unlike the previous demand-related models, these task models were the 

same for all participants. 

For example, if a person preferred the memory task over the motor task and the motor task 

over the hybrid task, then they preferred the memory task every time they were offered it. These 

six models represented every arrangement of possible task preference combinations. Model 

WMH predicted that the memory task would be preferred over the Motor task, which would be 

preferred over the Hybrid task. Model WHM predicted this order would be Memory task over 

Hybrid task over Motor task. Model HWM: Hybrid task over Memory task over Motor task. 

Model HMW: Hybrid task over Motor task over Memory task. Model MWH: Motor task over 

Memory task over Hybrid task. Model MHW: Motor task over Hybrid task over Memory task. 

Brackets () indicate there is no prediction between these two options. 

 

Table A4. Task Preference models for all participants 


