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Abstract 

 

Work on multiple-system theories of cognition mostly focused on the systems themselves, while 

limited work has been devoted to understanding the interactions between systems. Generally, 

multiple-system theories include a model-based decision system supported by the prefrontal cortex 

and a model-free decision system supported by the striatum. Here we propose a neurobiological 

model to describe the interactions between model-based and model-free decision systems in 

category learning. The proposed model used spiking neurons to simulate activity of the hyperdirect 

pathway of the basal ganglia. The hyperdirect pathway acts as a gate for the response signal from 

the model-free system located in the striatum. We propose that the model-free system’s response 

is inhibited when the model-based system is in control of the response. The new model was used 

to simulate published data from young adults, people with Parkinson’s disease, and aged-matched 

older adults. The simulation results further suggest that system-switching ability may be related to 

individual differences in executive function. A new behavioral experiment tested this model 

prediction. The results show that an updating score predicts the ability to switch system in a 

categorization task. The article concludes with new model predictions and implications of the 

results for research on system interactions. 

 

Keywords: computational modeling, cognitive neuroscience, system interactions, perceptual 

categorization, executive functions 
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1 Introduction 

The last 25 years have shown an increased interest in multiple-system theories of cognition 

(Ashby et al., 1998; Hélie et al., 2011; Kahneman, 2012; Sloman, 1996; Sun, 2002), and recent 

advances in cognitive neuroscience showing complementary roles of brain circuits has produced 

a surge in such interest (Eichenbaum & Cohen, 2001; Schacter et al., 2000; Squire, 2004). From a 

cognitive perspective, Sloman (1996) proposed that complementary associative and rule systems 

are used in reasoning and reviewed much evidence for it. Likewise, Kahneman and Frederick 

(2002) proposed a model of two cognitive systems, where System 1 is fast and automatic (e.g., 

associative) while System 2 is slow, effortful, and logical (e.g., rule-based). These ideas have been 

examined by using computational modeling techniques and progress has been made in various 

domains by generating quantitative predictions. COVIS (Ashby et al., 1998), CLARION (Sun, 

2002), the Explicit-Implicit Interaction (EII) theory (Hélie & Sun, 2010), and TELECAST (Hélie 

et al., 2011) are all examples of computational models implementing such ideas. 

The work on multiple systems in cognitive neuroscience has been twofold. First, some of 

the work has been devoted to locating the neural substrate of existing cognitive theories of multiple 

systems. For example, separable and distinct neural mechanisms have been found to facilitate 

explicit (e.g., rule-based) and implicit (e.g., associative) learning. Specifically, the hippocampus 

and temporal-parietal cortex have been shown to support explicit rule-based learning and 

knowledge representation (Cohen et al., 1985; Eichenbaum, 1999; Hélie et al., 2010; Hélie et al., 

2021). In contrast, the implicit associative learning circuit is believed to be mediated by a cortical-

subcortical circuit with a prominent role for the striatum (Heindel et al., 1989; Knowlton, 2002; 
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Reber & Squire, 1994; Waldschmidt & Ashby, 2011). Of particular interest, the medial temporal 

lobe and the basal ganglia are found to be differentially involved in explicit and implicit systems. 

Second, much effort has been devoted to work related to model-based (MB) and model-

free (MF) reinforcement learning (RL) (e.g., O’Doherty et al., 2017; Otto et al., 2013; Russek et 

al., 2017). Reinforcement learning (Sutton & Barto, 1998) is a class of learning algorithms inspired 

by early work in psychology showing that behavior is shaped by reinforcement using operant 

conditioning (Skinner, 1948; Thorndike, 1898). Specifically, a reward following an action 

increases the likelihood of that action in the future, while punishment reduces the frequency of that 

action in the future. The scenario where the agent directly associates the stimuli with a response is 

called model free reinforcement learning (MF-RL) (Rescorla & Wagner, 1972). However, while 

behaviorists were working on instrumental conditioning, Tolman (1948) provided evidence that 

animals do not just learn Stimulus  Response associations, but also build cognitive maps 

representing transition probabilities between different states of the world. This type of learning is 

referred to as model-based reinforcement learning (MB-RL) (Russek et al., 2017). Because the 

knowledge learned is the basis for choice and decision-making, the model-based and model-free 

labels have often been used to qualify decision-making processes. 

It should be noted that model-based and model-free do not refer to specific processes, but 

to classes of processes. The criteria to classify a process as MB or MF are related to what 

knowledge is involved (e.g., a cognitive map vs. direct Stimulus  Response associations) – not 

how it was learned or used. As a result, model-based and model-free processes have often been 

used to describe the distinction between controlled (MB) and habitual/automatic (MF) behaviors 

(O’Doherty et al., 2017), and most of the dual-system theories described above include one system 
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from each of these classes of algorithms. For example, the hypothesis-testing system in COVIS 

(Ashby et al., 1998) is a MB system. It learns to adjust rules that can dictate how to interact with 

the environment. In contrast, the procedural learning system in COVIS is an example MF system. 

It learns to associate regions of perceptual space with motor plans. A similar argument can be 

made for Kahneman and Frederickson’s (2002) theory, with System 1 being MF and System 2 

being MB. 

Table 1 summarizes many of the system dichotomies that have been used in different 

domains. Each row is a different way to describe the systems dichotomy and the columns show 

overlap between the vocabulary used to describe different types of systems. This table needs to be 

read with two important caveats in mind. First, the list is incomplete. Many dual-system theories 

have been proposed that have not been reviewed in this article. Here we focused on the most 

relevant dichotomies for the current work. Second, the overlap between systems vocabulary in 

various domains is only partial and imperfect. For example, non-declarative memory is often 

described as implicit while declarative memory is often described as explicit. However, this should 

not be interpreted as the terms being interchangeable. These terms describe different aspects of the 

systems and do not have to co-occur. As a result, Table 1 should be interpreted as a heuristic and 

a rough map of how the various domain dichotomies overlap. In the present work, we use the terms 

‘model-based’ (right column) and ‘model-free’ (left column) to refer to these dichotomies. 
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Table 1. Summary taxonomy of the different dichotomies reviewed 

Area of Research Dichotomies 

Cognitive psychology   

   Process Associative Rule-based 

   Awareness Implicit Explicit 

   Memory Non-declarative Declarative 

   Kahneman & Frederic (2002) System 1 System 2 

   COVIS (Ashby et al., 1998) Procedural learning system Hypothesis-testing system 

   Categorization task Information-integration Rule-based 

Cognitive neuroscience   

   Reinforcement learning / 

    decision-making 

Model-free Model-based 

   Brain circuits Basal ganglia Prefrontal cortex 

Note. The connections between the vocabulary used in different domains is imperfect and only 

approximate.  

 

1.1 Multiple Systems Theories and Category Learning 

Regardless of which model is used to implement the two systems, one common theme 

among multiple-system theories is that switching between systems is assumed to be easy, 

sometimes even seamless. However, up until recently this was an untested assumption, and 

evidence using perceptual category learning suggests that system-switching might be more 

difficult than initially thought. For example, decades of research on information-integration (II) 
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category learning suggests that many people have difficulties switching from a model-based 

system (suboptimal in this task) to a model-free (optimal in this task) system.  

In II categorization tasks, participants must integrate information from more than one 

dimension in a pre-decisional stage to maximize accuracy (Ashby et al., 1998). For example, sine-

wave gratings could be used as stimuli in an II perceptual categorization task (Figure 1A), where 

category membership is determined by two dimensions including the frequency of the sine-wave 

(bar width) as well as the rotation angle (bar angle). Each stimulus can be represented as a point 

in a two-dimensional space, with its coordinates defining a specific frequency and rotation angle 

that can be used to draw a stimulus. Categories can then be defined in this two-dimensional plane. 

With this representation, example II category structures are shown in Figure 1B. In this figure, 

each symbol represents the coordinates of a stimulus in perceptual space and specifies one specific 

rotation angle and frequency that allows for the drawing of a unique sine wave grating. In this 

example, participants need to learn to categorize the ‘o’ and ‘+’ stimuli into separate categories. 

The optimal decision bound separating the categories can be described by drawing a diagonal line 

dividing the categories in Figure 1B, but notice that the line would not correspond to a meaningful 

verbal description. The verbal description would be: ‘o’ are stimuli where the rotation angle is 

larger than the frequency, which is not meaningful given that rotation angle and frequency are not 

commensurable. Thus, II categories are thought to be learned with MF-RL since there is no 

verbalizable, explicit rule to explain how categories are distinguished.  
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A B 

Figure 1: (A) Example sine-wave stimulus shown in a perceptual categorization task, (B) Example 

II category structures. Category “o” stimuli were generated using a multivariate normal 

distribution with the following parameters: μo = {38, 50}; Σo = {10, 0; 0, 280}.  The same sampling 

method was used to generate category “+” stimuli: μ+ = {62, 50}; Σ+ = Σo. The II stimuli were then 

rotated 45 degrees counterclockwise around the center of the stimulus space {50, 50}. 

 

Decision bound models (DBM) (Hélie et al., 2017; Maddox & Ashby, 1993) can be used 

to identify the response pattern that participants are producing based on their response to each 

individual stimulus. Specifically, a representation of each participant’s response is drawn in 

stimulus space. This representation is similar to Figure 1B, except that each stimulus is labeled 

using the participant’s categorization response instead of the desired category label. Next, a 

number of DBM are fit to the participant’s responses. Typically, the DBMs are linear planes that 

attempt to separate the participant’s responses. Models with planes that are perpendicular to the 

axes allow for a meaningful verbal description and are considered MB. The optimal MB DBM (a 

vertical line located at 50 in Figure 1B) would yield about 75% response accuracy. In contrast, 
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DBM models that allow the plane to have a slope do not yield a meaningful verbal description and 

are considered MF. The optimal MF DBM in Figure 1B is a diagonal line that perfectly separates 

the category and yields a response accuracy of 100%. Lastly, DBMs also include guessing models, 

where participants respond randomly without considering the information on the screen. These 

models are considered MB because not engaging with the task is an explicit volitional choice. 

Participants typically begin learning II tasks by trying to use the suboptimal MB system 

(for a recent review, see Ashby & Valentin, 2017). In an II categorization task like the one 

presented in Figure 1, the most accurate verbal rules (e.g., stimuli with thin bars are in one category 

while stimuli with thick bars are in the other) can produce an accuracy of about 75%. To perform 

optimally, participants need to abandon such rules and rely on the MF system. Going back to Table 

1, this means that participants begin learning the task using MB-RL, and need to switch to MF-

RL. From a neuroscience perspective, this means switching from a learning circuit centered around 

the prefrontal cortex (PFC) to a learning circuit centered in the striatum.  

1.2 Trial-by-trial system-switching 

In the previous example, one must abandon MB-RF (based on a prefrontal circuit) and 

switch to MF-RL (based on a striatal circuit) in order to perform optimally. Note that this switch 

is self-initiated, in that there is no instruction provided to the participant informing them which 

system they should use, or even that they should switch systems. In past decades, research has also 

shown that trial-by-trial cue-based switching is extremely difficult. For example, Erickson (2008) 

asked participants to categorize “space shuttle” schematics (i.e., rectangles with internal line 

segments) into one of four categories. Two of the categories could be distinguished using a simple 

verbal rule [i.e., rule-based (RB) categories] while the other two categories could not be 
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distinguished by a verbal rule (i.e., II categories). While performing the task, each category was 

associated with a different response button, and categories (RB or II) were cued using differing 

background colors. Decision-bound models were individually fit to the RB and II trials to identify 

“switchers” and “non-switchers.” Switchers were participants whose RB and II trial data were best 

fit by optimal DBM models. All other participants were labeled as non-switchers. Only 37% of 

the participants optimally switched between systems on a trial-by-trial basis. A more recent cue-

based switching experiment by Crossley and colleagues (2018) used sine-wave gratings (as in 

Figure 1A) and reported a switching rate of about 40% using a similar design.  

Another contribution of the Crossley et al. (2018) study was that it made a connection 

between system-switching in categorization and task-switching (Kiesel et al., 2010; 

Vandierendonck et al., 2010). In task-switching, participants are typically asked to perform one of 

two tasks, cued on a trial-by-trial basis. Trials where participants need to switch from one task to 

another suffer from a switch cost [i.e., lower accuracy and longer response time (RT)] when 

compared to consecutive trials of the same task. System-switching could be a special case of task-

switching in which each task relies on a different categorization system. Crossley et al. (2018) 

examined this possibility by comparing the switch cost when participants needed to switch 

between two RB categorization tasks (both optimally relying on MB-RL / a prefrontal circuit) to 

the switch cost when participants needed to switch between a II (optimally relying on MF-RL / a 

striatal circuit) and a RB categorization task. They found that the switch cost was smaller when 

switching between two tasks relying on the same learning system compared to switching between 

two tasks relying on different learning systems. 
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The similarities between task- and system-switching noted by Crossley et al. (2018) led to 

further research on the effects of factors that facilitate task-switching on system-switching. For 

example, Hélie (2017) explored the effects of additional task training and preparation time (i.e., a 

delay between the switch cue and the task stimulus) on system-switching. The highest proportion 

of successful trial-by-trial system-switchers in that study was 65.7% of the sample. This high 

proportion of switchers was achieved by implementing a second session of training on II and RB 

category structures, and by allowing participants to have time to prepare to switch system by 

providing a cue before the categorization stimulus was presented. Aging research provides 

additional evidence that system-switching is a special case of task-switching, as aging has been 

shown to affect both cue-based system-switching (Hélie & Fansher, 2018), and task switching 

(Kray & Lindenberger, 2000). 

1.3 Why is switching difficult? 

The previous subsections suggest important individual differences in switching ability, 

with almost half of participants relying on suboptimal systems in both self-initiated and cue-based 

system-switching categorization experiments. Lim and Hélie (2019) simulated published II data 

from Hélie & Cousineau (2015) using the COVIS model of category learning (Ashby et al., 1998; 

Hélie et al., 2012). In this simulation, data from participants who switched to the correct striatal 

system (MF-RL) were fitted separately from the data of participants who failed to switch and kept 

relying a suboptimal system (MB-RL). By exploring the obtained model parameter values, they 

observed that simulated optimal participants (who switched to a striatal circuit) were more 

sensitive to negative feedback, while simulated suboptimal participants (who continued relying on 

a prefrontal circuit) were more sensitive to positive feedback. As a result, they hypothesized that 



Computational model of prefrontal and striatal interactions 

 

12 

optimal participants in II categorization tasks may be more sensitive to negative feedback than 

participants who perseverate with MB-RL. Intuitively, it makes sense that participants who are 

less sensitive to negative feedback may focus less on their 25%-30% error rate from using a 

suboptimal system, and instead focus more on the other trials where they receive positive feedback 

(about 70% of the trials).  

To test this hypothesis, Lim and Hélie (2019) asked participants to complete both the Iowa 

gambling task to estimate reward sensitivity and an II categorization task to determine if the 

participants could switch to an optimal striatal circuit. The results supported their hypothesis. As 

predicted by the COVIS simulation, participants that used an optimal learning system in II 

categorization had lower reward sensitivity compared to participants that used a suboptimal 

learning system. They also had higher sensitivity to punishment than participants who used a 

suboptimal system. Lim and Hélie also used the Iowa gambling task data to quantify the 

participants’ tendencies to explore the different deck options. Generally, exploration was related 

to the switch to MF-RL in II categorization. Sensitivity to punishment was also related to 

propensity to explore. These results were used to inform a new neurobiological model of system-

switching described in the next section. 

1.4 The present work 

The goal of this article is to propose a new neurobiological theory and computational model 

of system-switching. The article is organized as follows. Section 2 presents a new neurobiological 

model of the interactions of two category learning systems supported by the prefrontal cortex and 

the striatum (respectively). In the proposed model, system-switching is based on the hyperdirect 

pathway of the basal ganglia (BG). Specifically, the hyperdirect pathway either inhibits or allows 
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BG activity to reach premotor areas and control behavior. This gating represents system-switching. 

Next, Section 3 uses the model to simulate published self-initiated system-switching data in an II 

categorization task. This simulation is followed by a simulation of the effects of aging on cue-

based trial-by-trial switching in Section 4. Results from these simulations suggest that individual 

differences in executive functions (EF) may be an important predictor of cue-based trial-by-trial 

system-switching ability. This prediction was tested in Section 5 using a new behavioral 

experiment to investigate whether common measures of EF would predict whether participants 

could switch on a trial-by-trial basis in a categorization task. Section 6 concludes with a general 

discussion of possible extensions and implications of the proposed model. 

2 A neurobiological theory of system-switching 

The work reviewed in Section 1 suggests that system-switching is related to reward 

processing, and that in most multiple-system theories the decision points of the systems are in the 

prefrontal cortex (MB) and the striatum (MF). Together, these results allow for the proposal of a 

new neurobiological theory of system-switching. Previous work on the computational models of 

multiple systems has focused on the learning systems themselves – not the switching mechanism. 

The interaction between systems, particularly the neurobiological basis of the switching interaction, 

has rarely been discussed or systematically studied. We aim to build a neurobiological 

computational model to show how different brain areas can be connected to support the system-

switching mechanism.  

The proposed model is designed to show the neural circuit underlying the switching 

mechanism between the learning systems. Because the model is focused on the switching 

mechanism, the MB and MF modules are included as black boxes. This choice was made to 
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increase generality of the proposed switching and minimize the number of assumptions: The only 

assumptions are based on circuit connectivity, so the MB system is assumed to select its response 

in the prefrontal cortex, and the MF system is assumed to select its response in the striatum. 

Importantly, both systems are circuits and can include other supporting brain areas. Aside from 

the basic assumptions above, here we do not make any additional assumptions about the learning 

and decision systems. In the next subsection we discuss some empirical results on the neural circuit 

underlying system interactions. 

2.1 Neurobiological interactions and system-switching 

Neuroimaging and behavioral evidence suggest an antagonistic relationship between 

explicit and implicit memories (Ashby & Crossley, 2010; Poldrack & Packard, 2003; Schroeder 

et al., 2002). However, Foerde et al. (2006) observed a persistent striatal activation even during 

explicit tasks. As a result, Crossley and Ashby (2015) proposed that the inhibition between explicit 

and implicit systems does not operate at the level of learning, but instead occurs at the level of 

expression. In most theories, MF-RL is mediated by dorsolateral striatum, while MB-RL is 

mediated by the PFC and medial temporal lobes (Ashby & Ennis, 2006; Fletcher et al., 1998; 

Mishkin et al., 1984; Tulving & Markowitsch, 1998). Many possible anatomical circuits may serve 

to mediate the interaction between these two learning systems. One of these possibilities is through 

the hyperdirect pathway of the basal ganglia, as suggested by Ashby and Crossley (2010).  

To adapt to the changing environment, processes that interrupt irrelevant or unsuitable 

behaviors are important to achieve goal-directed behavior (Kenner et al., 2010). Such processes 

may act like an “emergency brake” that provides nonselective inhibition to suppress all responses 

(Kenner et al., 2010). In the proposed model, all responses from the striatal MF system are initially 
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inhibited. This is consistent with existing studies showing evidence of the involvement of the 

hyperdirect pathway regions in response to stopping and switching situations through nonselective 

inhibition (Kenner et al., 2010).  

The hyperdirect pathway is shown in Figure 2. This circuit acts to either allow or inhibit 

signals from the striatum to the cortex. The hyperdirect pathway starts with direct excitatory 

glutamate projections from the frontal cortex to the subthalamic nucleus (STN). Through 

excitatory glutamate projections, the connection from the STN is directed to the internal segment 

of the globus pallidus (GPi) (Joel & Weiner, 1997; Parent & Hazrati, 1995). This excitatory input 

offsets the inhibitory input from the striatum to the GPi, which reduces the influence of the striatum 

on the cortex (through the thalamus).  

By reducing subthalamic activity, the hyperdirect pathway allows signals from the striatum 

to reach the cortex; by increasing the subthalamic activity, subcortical influence is reduced. Thus, 

through the hyperdirect pathway, the influence of the MF system to motor outputs in the cortex 

can be prevented, without having a direct interaction with the striatum itself. Because the striatum 

is presumably the learning site of MF-RL, MF-RL could still take place while the MB-RL system 

dominates responding (Crossley & Ashby, 2015). In the hyperdirect pathway, the computational 

function of the STN is to generate pauses for stopping and conflict processing. These pauses allow 

time for the accumulation of evidence to select the appropriate actions (Aron et al., 2016). 

 

Figure 2. The hyperdirect pathway of the cortico-basal ganglia network. 
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2.2 Model overview 

Ashby and Crossley (2010) suggested that learning system interactions are controlled by 

the frontal cortex and the STN through the hyperdirect pathway in the BG. The hyperdirect 

pathway starts with excitatory glutamate projections from the frontal cortex, through the pre-

supplementary motor area (preSMA), to the STN (Paul & Ashby, 2013). The preSMA plays a role 

in facilitating the switch between learning systems’ responding by inhibiting competing motor 

plans when a response conflict occurs (Hikosaka & Isoda, 2010; Nachev et al., 2007; Paul & Ashby, 

2013). The preSMA sends the switch-related signals to the STN, leading the STN to suppress 

ongoing behavior that is no longer relevant to promote the execution of the new behavior 

(Hikosaka & Isoda, 2010).1  

To suppress the response of the MF-RL system, the STN increases activation in the GPi 

(i.e., a main output of the BG), thus strengthening the inhibition of the thalamus. In the proposed 

model, the output from the thalamus is considered as the response of the MF-RL system. Inhibition 

of the thalamus’ output represents the inhibition of the MF system output with increased STN 

activity. Responses from the MF-RL system converges with responses from the MB-RL system in 

the dorsal premotor cortex (PMd) to allow planning and preparation for an appropriate movement.  

Given these considerations, the new model simulated neurons from three areas of the brain: 

the preSMA, the STN, and the PMd. Individual neurons were simulated using the Izhikevich (2007) 

firing model. Example simulated spike trains from each region are shown in Figure 3. The 

simulations focused on perceptual category learning, where in each trial of the simulation the 

                                                 
1 The preSMA is part of the medial PFC in primates. Interestingly, Powell & Redish (2016) showed evidence 

for a similar role of the medial PFC in rodents. However, the proposed theory and model is focused on primate circuits. 
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model had to assign a given ‘stimulus’ to one of the available categories. For instance, the stimulus 

may be a circular sine-wave grating, as shown in Figure 1, which varies from trial-to-trial in terms 

of orientation and bar width. However, the perceptual categorization process was not simulated, 

so all that was needed was a response generation process for each system. Both the MB and MF 

systems generated their response, and the overall output for each trial was selected at the PMd 

unit-level (where the two systems are competing for control). Note that because the MB and MF 

systems were modeled as black boxes, the proposed model is general and could be used with other 

stimuli or for other tasks as long as the responses are determined in the prefrontal cortex and 

striatum. 

 

  

Figure 3. Example firing patterns of preSMA (left), STN (middle), and PMd (right) cells. The 

firing patterns were generated based on the specification stated in Eqs. A1 (preSMA  and PMd) 

and A2 (STN). 

 

In each trial, each system outputted a categorical decision. The system responses converged 

in the PMd so that the PMd units became activated accordingly. For instance, in a two-choice 

categorization task that requires sorting stimuli into category ‘A’ or ‘B’, if the MB system chose 
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‘A’ as the categorical decision, the PMd unit that signals the pressing of the button ‘A’ became 

activated. Initially, the PMd units should only receive input from the MB system, in line with 

earlier work suggesting that primates respond using MB-RL at the beginning of learning (Ashby 

et al., 1998; Smith et al., 2012). Thus, responses from the MF system were inhibited from reaching 

the PMd units. Switching is implemented as a feedback-driven reduction in inhibition of the 

response from the MF system to the PMd units, until a point where the activity in the PMd units 

is driven more by the MF system then the MB system. Spiking models were incorporated to show 

the dynamic process of inhibition (or reduction in inhibition) of the response of the MF system. At 

the end of each trial, the model output was a categorical decision (from the PMd), either pressing 

the button corresponding category A or B. The model learned using accuracy feedback after each 

choice. Figure 4 shows the flow of the circuit of the model. All computational details are included 

in the Appendix. 
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Figure 4. Block diagram representing the proposed model of system-switching. Orange lines 

indicate a plastic connection, while blue lines indicate a fixed connection. Arrow ends indicate 

activation while dot ends indicate inhibition. Grey boxes indicate processes within the agent while 

black boxes are outside the agent. 

 

In an experiment that involves more than one category learning task, the perceptual 

stimulus may be preceded by a perceptual cue to indicate which task is to be done in the current 

trial, making participants aware of any change in task. For example, a stimulus can be preceded 

by a colored background to indicate when the task is changing. Different colored backgrounds may 

be used as perceptual cues for different tasks. For example, a blue background may indicate that 

subjects are performing an RB categorization task, while a green background may indicate an II 
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task. As a result, trials with the same perceptual cue should be categorized with the same 

responding system. A change in the perceptual cue from one to another means a change in the 

responding system is required to categorize the stimulus shown. To account for this possibility, 

perceptual cues were added to the model to simulate categorization tasks that require a trial-by-

trial switch between categorization learning systems. As can be seen in Figure 4, perceptual cues 

can affect activity in the preSMA, as well as each system’s accuracy (because of switch cost). 

2.3 Learning to switch 

As described in the previous subsection, the proposed new model assumes that at the start 

of a categorization task, the MF response is inhibited so that the overall model output is MB. 

However, as the model receives performance feedback at the end of each trial, confidence in the 

MB and MF systems is adjusted. Specifically, a correct response from one of the systems increases 

confidence in that system, while an incorrect response from the MB system decreases confidence 

in that system. This captures the effect of feedback sensitivity observed in Lim & Hélie (2019). 

For example, higher sensitivity to negative feedback reduces confidence in the MB system more 

quickly, which increases the likelihood of switching to MF responding. However, if sensitivity to 

positive feedback is higher, then correct responses increase the confidence in the MB system and 

reduce the likelihood of a system switch. A similar process is used to learn the associations 

between cue values and systems. The equations and parameters controlling learning are detailed 

in the Appendix. 
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3 Accounting for system-switching in an information-integration categorization task 

As a first test of the new model, we fit the behavioral data in the perceptual categorization 

task of Lim & Hélie (2019). As a reminder, participants in an II task initially use a MB (prefrontal) 

system, with some participants eventually abandoning the MB system in favor of a MF (striatal) 

system. As a result, optimal participants using a MF system were labelled as ‘switchers’. All other 

participants were labelled as ‘non-switchers’. To identify the participants’ responding system, 

DBMs were individually fit to each block of 100 trials of each participant. Participants whose last 

block of 100 trials was best fit by a diagonal line were optimal and assumed to use the MF system. 

The accuracy learning curves are shown in Figure 5 (full lines). Overall, 39 participants were 

labelled as switchers and 11 participants were labelled as non-switchers. As can be seen, switchers 

performed well throughout the experiment, whereas non-switchers performed close to chance 

throughout. 
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 Figure 5. Average accuracy per block from Lim & Hélie (2019) and model simulation results for 

each block of 100 trials. Solid and dashed lines show data for participants who responded using an 

optimal system (switchers), whereas solid (with ‘x’ markers) and dotted lines indicate participants 

who responded using a suboptimal system (non-switchers). Error bars for experimental data are 

the standard error of the mean, while error bars for simulation data are the standard deviation. 

 

3.1 Simulation 

We ran 100 simulations with the model, representing 100 ‘participants’. The input to the 

model was the correct category of each stimulus shown to the participant in Lim & Hélie (2019), 

which was given as either “A” or “B”. Each simulation consisted of 6 blocks of 100 trials (same 

as the behavioral experiment). Throughout the task, there was no perceptual cue for the use of a 

particular category learning system, thus the perceptual cues were set to 0. 
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During each trial, the MB and MF systems in the model generated a response according to 

the actual category of the stimulus and the system’s accuracy probability. Because there were two 

categories (A and B) in the experiment, the responses of the MB and MF systems served as the 

inputs for the PMd units corresponding to Category A or B. The responses from the two systems 

were fed into the neuron-based circuit described in the Appendix. The circuit was modeled as a 

small-scale representation of the respective brain areas to hold a unit of STN cell, a unit of preSMA 

cell, and two units of PMd cells. Parameter values common to the simulations of both switchers 

and non-switchers are shown in Table 2. 

The two PMd units were included to represent category selection, one to account for 

pressing the button corresponding to Category A, and the other for Category B. The PMd units 

were activated by the output of the MB and MF systems. Because the PMd units incorporate lateral 

inhibition, PMd units A and B inhibited each other.  

 

Table 2. Parameter values used in the simulation of Lim & Hélie (2019) that were common for 

both switchers and non-switchers 

Model-level Parameter Value 

MF’s response generation  𝐴𝑐𝑐𝑀𝐹 (Eq. A5) 0.84 

Perceptual cues 𝑣𝑐 (Eqs. A6, A7, A12) 0 for all trials 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  learning 𝛾𝑀𝐵 (Eq. A13) 0.008 

 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑥
 (Eq. A14) 5.1 

Category selection PMd integrated α-activity 

threshold 

1.33 

Note. These parameters were found using a rough grid search. 
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For each trial, when the output of PMd units (in the form of integrated α-activity) reached 

the threshold, the PMd unit that reached the threshold first was the winner. The category it 

represented was selected as the overall outcome of the model for that trial. If none of the α-activity 

of the two PMd units reached the threshold in the given time of 2000 ms, the PMd unit that had a 

higher α-activity at time = 2000 ms was selected as the winner. This latter case happened in about 

3% of the simulated trials.  

3.1.1 Accuracy Learning Curve 

One category outcome, either Category A or B was chosen in each trial. For each trial, if 

the suggested category outcome from the model matched with the actual category of the stimulus, 

the model received feedback with the value 1, and 0 if the two categories did not match. For each 

simulation, the categorization accuracy for each block of 100 trials. The resulting simulated 

accuracy learning curves are shown in Figure 5 (dashed lines). 

The goal of the simulation was to fit the data according to the two groups of participants, 

namely switchers and non-switchers. The changes in parameters that resulted in the difference 

between switchers and non-switchers are shown in Table 3. As can be seen, only 2 free parameters 

were needed to account for group differences. From Figure 5, the accuracy performance of the two 

groups was simulated with a RMSD of 1.69%.   

 

Table 3. The difference in parameter values of the model to separate switchers from non-

switchers 

 Value 
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Parameters Switchers  Non-switchers 

𝐴𝑐𝑐𝑀𝐵 (Eq. A4) 0.745 0.54 

𝛾𝑀𝐹 (Eq. A14) 0.07 0.003 

 

First, the accuracy of the MB system was set higher for switchers than non-switchers. 

𝐴𝑐𝑐𝑀𝐵 specified how likely it was for the MB system to produce an accurate response in each trial. 

If participants selected the best possible response from the MB system to categorize the stimuli, a 

one-dimensional rule would give an accuracy of about 76%. If participants used a conjunction rule 

that takes into consideration both the varying stimulus dimensions, the accuracy would rise to 

about 91%, assuming that the best rule is used. However, it is highly unlikely that participants used 

a conjunction rule in such categorization tasks (Hélie et al., 2012). Conjunction rules are difficult 

to learn, and as a result they tend to have low salience and are rarely explored (Ashby et al., 1998). 

For these reasons, 𝐴𝑐𝑐𝑀𝐵 in both switchers and non-switchers was constrained to be lower than an 

accuracy of 0.76. 

Second, the 𝛾𝑀𝐹 of switchers was higher than that of non-switchers. Higher 𝛾𝑀𝐹 signified a 

higher learning rate for the MF system’s confidence for each update. If the MF produced a correct 

response, the increment for the learning update was higher. Hence, the model simulation suggests 

that switchers had better categorization rules in their MB system, but also learned about the 

efficiency of the MF system more quickly when compared to non-switchers. 

3.1.2 Switchers 

With an increase in MB accuracy and learning rate of confidence in the MF system, the 

model was able to distinguish switchers from non-switchers. With higher 𝐴𝑐𝑐𝑀𝐵 , a switcher 
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participant’s initial MB accuracy was higher than that of the non-switchers. Thus, high 𝐴𝑐𝑐𝑀𝐵 

might render switching harder, but this difficulty was overcome by having higher 𝛾𝑀𝐹 to increase 

the MF system’s confidence at a higher rate. Thus, even if the confidence in the MB system was 

high, high confidence in the MF system allowed system-switching in a categorization task when 

more trials were carried out.  

Figure 6 shows the ratio of activity in the MF system to that of the MB system for switchers. 

In the beginning, the ratio was 0, since the response from the MF system was not fed into PMd 

units (due to the inhibition from STN). As the MF system gained more confidence by producing 

correct responses, the ratio increased. When the ratio was below 1, if the two systems’ responses 

conflicted, the overall response of the model followed the response from the MB system. When 

the ratio was around 1, the competition between the systems was higher, and the model’s overall 

response could follow either one of the systems (or both when the suggested responses from both 

systems were the same). When the ratio was much greater than 1, the overall response of the model 

followed the response of the MF system when the two systems’ responses differed. Thus, Figure 

6 shows that the switch from the MB system to the MF system occurred after approximately 200 

trials in this task. According to the DBM analyses in Lim & Hélie (2019)’s experiment, 31 out of 

39 switchers relied on the MF system by the second block of the task (trial = 200). 
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Figure 6. The ratio of activity of the MF to MB system for every trial for switchers. 

 

3.1.3 Non-switchers 

Non-switchers had lower MB accuracy and a slower learning rate for confidence in the MF 

system. It is important to note that non-switchers included all participants who only relied on the 

MB system throughout the task. Some of these participants were using suboptimal categorization 

rules, while others were guessing or refusing to engage with the task. This interpretation is 

supported by Rabi and Minda (2014), who argued that participants who were best fit by guessing 

DBMs struggled with identifying the correct rule or did not apply a rule consistently. As a result, 

the non-switchers group is not as homogenous as the switchers group and the modeling results for 

non-switchers should be interpreted with care.  

In the proposed model, switching occurs when the MB system fails to give accurate 

responses over time or when the MF system gains enough confidence. In Lim & Hélie (2019)’s 

experiment, the average accuracy of non-switching participants was generally lower than that of 
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switchers, even in the first block where switchers still relied on the MB system. Thus, the 𝐴𝑐𝑐𝑀𝐵 

for non-switchers was lower than that of the switchers. As a result, the MB system’s consistent 

failure to output a correct response should, in time, decrease the STN activity to suppress the MF 

system’s output from reaching the PMd. However, even with sufficiently low STN activity, the 

weight of the MF system’s response should still be lower than the weight of the STN activity to 

suppress switching. Thus, 𝛾𝑀𝐹 was set low enough to slow the confidence gaining process of the 

MF system. This led to a failure to switch from the MB to MF system, and the continued reliance 

on the MB system.  

3.2 Discussion 

The ability to evaluate the effectiveness of the different learning systems drives the 

switching capabilities of switchers and non-switchers. At the beginning of the task, even when 

responding using the MB system, switchers can categorize the stimulus better than the non-

switchers. This could indicate that it is more difficult for non-switchers to find a good rule to 

implement in the MB system for the task, and that some of the non-switchers may revert to 

guessing. Switchers can tackle the task with more appropriate rules in the MB system and 

eventually learn about the efficiency of the MF system more quickly. This difference in the 

learning rate of system confidence is consistent with the hypothesis generated by the COVIS 

simulation reviewed in Section 1.3, which suggested that feedback sensitivity to update system 

confidence was a critical difference between switchers and non-switchers. 
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4 Accounting for trial-by-trial system-switching deficits in typical aging and Parkinson’s 

disease 

In this section we describe simulations of categorization system-switching comparing 

participants from different age groups and those with Parkinson’s disease from Hélie & Fansher 

(2018). Past research had shown an association between aging and cognitive flexibility, where 

older adults are often worse at adapting to shifting situational demands when compared to younger 

adults (Wilson et al., 2018). Instead of examining whether participants would switch from a MB 

system to a MF system in II category learning, the work from Hélie and Fansher explored whether 

participants from different age groups could switch between categorization tasks requiring either 

MB-RL or MF-RL flexibly on a trial-by-trial basis. Specifically, the research explored the deficits 

in categorization system-switching in older adults and people with Parkinson’s disease.  

The experiment involved two types of category learning tasks: an RB categorization task 

and an II categorization task. Throughout the experiment, participants were asked to categorize 

circular sine-wave gratings. The category structures used in the RB and II tasks are shown in Figure 

7A. Young adults, older adults, and people with Parkinson’s disease were first trained in an RB 

categorization task for 100 trials (Block 1), followed by 400 trials of training in an II categorization 

task (Blocks 2-5). During the training phase, the two tasks were done separately. Background color 

cues indicated the type of task for the particular trial (blue for RB or green for II). Figure 7B shows 

example trials. After the training phase, participants went through the testing phase (Block 6). In 

the testing phase, a block of 100 trials requiring trial-by-trial switching between learning systems 
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was presented, where RB and II categorization trials were randomly intermixed.2 The data from 

the testing phase were used to compute the accuracy switch cost (i.e., mean accuracy in trials 

preceded by a trial with the same background color minus accuracy in trials preceded by a trial 

with a different background color). The testing phase was also used to identify successful switchers. 

Data from RB and II trials were separated for the test phase and DBM models were fit separately 

to the RB and II data. Switchers were participants whose RB data was best fit by a DBM model 

from the MB system and II data was best fit by a DBM model from the MF system. All other 

participants were labelled as non-switchers. Note that Hélie and Fansher (2018) used the same 

labeling methodology as Erickson (2008). 

 

 

(A) (B) 

Figure 7. (A) Category structures used in the RB and II tasks. ‘x’ denotes members of category 

“A”, “◊” denotes members of category “B”, “○” denotes members of category “C”, “□” denotes 

members of category “D”. “A” and “B” are II categories, while “C” and “D” are RB categories. 

                                                 
2 Hélie & Fansher (2018) also included a second test block where the location of the response buttons was 

changed. Because the proposed model does not include a motor component, this additional testing block is not 

simulated or discussed any further. 
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Frequency is inversely related to bar width. Rotation angle indicates the orientation of the stimulus 

and was calculated as the counterclockwise rotation from horizontal. (B) Example II (left) and RB 

(right) trials of the categorization task. Note that older adults and people with Parkinson’s disease 

used a response box with large buttons instead of the illustrated regular keyboard.  

 

The study’s hypothesis was that reductions in dopamine would be related to diminished 

cognitive flexibility and system-switching ability (Hélie & Fansher, 2018). As a result, older 

participants would show impaired system-switching, and this impairment would be worse for 

people with Parkinson’s disease when compared to age-matched controls. Operationally, aging 

and Parkinson’s disease would result in a higher accuracy switch cost when compared to young 

adults, which would reduce the proportion of participants that could switch on a trial-by-trial basis 

as well as overall accuracy in the intermixed testing phase. 

The results showed that participants in all groups performed well in the training phase, but 

group differences were present in the intermixed testing phase. The young adult group had higher 

accuracy in categorization compared to participants with Parkinson’s disease (Figure 8, panels A 

and C, respectively). However, the difference between the older adult group and people with 

Parkinson’s disease was not significant (Figure 8, Panels B and C). The proportion of switchers in 

the young adult group was greater than that in the older adult group and people with Parkinson’s 

disease (Figure 9). The accuracy switch cost was statistically significant for the young adult 

switchers and non-switchers (Figure 10a). For older adults, the accuracy switch cost was 

statistically significant for the switchers and trending for non-switchers. For people with 

Parkinson’s disease, the accuracy switch cost was not statistically significant for switchers but was 



Computational model of prefrontal and striatal interactions 

 

32 

statistically significant for non-switchers. Overall, the results suggest that aging decreases the 

ability to switch between systems.  

4.1 Simulation 

For each group of participants, we ran 100 simulations with the proposed model, 

representing 100 ‘participants’. The model received as input the desired category of each stimulus 

shown to the participant in the Hélie & Fansher (2018) categorization task, which was given as 

either “A”, “B”, “C” or “D”. Each simulation consisted of 6 blocks of 100 trials of categorization. 

The task flow of the simulation experiment was:  

 

100 RB training trials  400 II training trials 100 intermixed RB and II trials 
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(A)

 

(B)

 

(C) 

 

Figure 8. Mean accuracy per block in the experiment for (A) young adults, (B) older adults, and 

(C) people with Parkinson’s disease. Vertical dashed lines denote a change in task, and the letters 

over block numbers indicate the task being performed from that block until the next vertical dashed 

line (M = mixed). The dashed line in each panel indicates data obtained from the simulation while 

the solid line indicates data from the behavioral experiment conducted by Hélie and Fansher (2018). 

Error bars are the between-subject standard error of the mean. 

 

In this experiment, perceptual cues were given to the participants along with the stimulus: 

a blue background indicated an RB trial and green background indicated an II trial. In the model, 
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both perceptual cue parameters 𝑣𝑐𝑀𝐵 and 𝑣𝑐𝑀𝐹 produced a binary output (0 or 1). During an RB 

trial, 𝑣𝑐𝑀𝐵 was set to 1 while 𝑣𝑐𝑀𝐹 was set to 0, and the reverse was true for II trials. Given the 

relationship between RB category structures and MB systems, and II category structures and MF 

systems, the presence of 𝑣𝑐𝑀𝐵 increased activation to the preSMA cell, thus inhibiting the MF 

system’s responses from reaching the PMd cells, whereas the presence of 𝑣𝑐𝑀𝐹 should decrease 

such activation to preSMA and release the inhibition of the MF system’s response. However, 𝑣𝑐𝑀𝐹 

should have less of an effect on the preSMA units at the beginning of the trials and should only 

begin influencing responses after undergoing more training trials (i.e., the association needs to be 

learned). It took longer to train the MF system as compared to the MB system (Hélie & Fansher, 

2018). This was achieved by setting the learning rate of 𝑣𝑐𝑀𝐹  association to a lower value as 

compared to that of 𝑣𝑐𝑀𝐵. 

 

 

Figure 9. The proportion of switchers in each condition. Black bars indicated data from simulation 

while white bars indicated data from the behavioral experiment conducted by Hélie and Fansher 

(2018). 
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Figure 10. Accuracy switch cost for switchers and non–switchers in each group for (A) data 

obtained from simulation and (B) data obtained from the behavioral experiment conducted by 

Hélie and Fansher (2018). Black bars indicate switch cost for young adults, grey bars indicate 

switch cost for older adults, and white bars indicate switch cost for people with Parkinson’s disease. 

Error bars are the between-subject standard error of the mean. 

(A) 

 

 

 

 

 

 

(B) 
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With two different tasks (RB and II) simulated, the accuracy probabilities of the MB and 

MF systems were task dependent. The accuracy probabilities of the MB and MF systems for RB 

and II tasks are shown in Table 4. The MB system allows for optimal performance in the RB task, 

while a MF system is optimal for an II task. In the model, the change in the task was hinted with 

the change in the perceptual cues. In an RB task, the MB system generates an accurate response 

with the probability accuracy of 𝐴𝐶𝐶𝑀𝐵𝑅𝐵
, whereas the MF system generates an accurate response 

with the probability accuracy of 𝐴𝐶𝐶𝑀𝐹𝑅𝐵
. Similarly, in an II task, the MB system generates an 

accurate response with the probability accuracy of 𝐴𝐶𝐶𝑀𝐵𝐼𝐼
, whereas the MF system generates an 

accurate response with the probability accuracy of 𝐴𝐶𝐶𝑀𝐹𝐼𝐼
. Upon switching from one task to 

another, the accuracy of the MB system response is affected by proactive interference, which may 

cause a decrease in performance shortly after a switch. Proactive interference was modeled as an 

exponential decay and was dependent on the previous task type (RB or II).  

 

Table 4. Accuracy probability of MB and MF systems for RB and II tasks 

Accuracy probability Value 

𝐴𝐶𝐶𝑀𝐵𝑅𝐵 (Eq. 1) 0.90 

𝐴𝐶𝐶𝑀𝐵𝐼𝐼 (Eq. 1) 0.78 

𝐴𝐶𝐶𝑀𝐹𝑅𝐵 (Eq. 2) 0.73 

𝐴𝐶𝐶𝑀𝐹𝐼𝐼 (Eq. 2) 0.88 
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𝐴𝐶𝐶𝑀𝐵 =  (𝑣𝑐𝑀𝐵 × 𝐴𝐶𝐶𝑀𝐵𝑅𝐵) + (𝑣𝑐𝑀𝐹 × 𝐴𝐶𝐶𝑀𝐵𝐼𝐼)

− [𝑅𝑀𝐵𝑅𝐵
(𝑣𝑐𝑀𝐵) + 𝑅𝑀𝐵𝐼𝐼

(𝑣𝑐𝑀𝐹)](1 − 𝐷)𝑁 

(1) 

 

𝐴𝐶𝐶𝑀𝐹 = (𝑣𝑐𝑀𝐵 × 𝐴𝐶𝐶𝑀𝐹𝑅𝐵) + (𝑣𝑐𝑀𝐹 × 𝐴𝐶𝐶𝑀𝐹𝐼𝐼) (2) 

 

The MB and MF systems generated category responses based on their accuracy probability 

independently. With two tasks modeled, two sets of category options were provided: C-D (RB 

task) and A-B (II task). In each task, the model can only choose from the two options (A and B, or 

C and D) depending on the cue. Both the MB and MF systems held four units of responses each, 

representing categorical choices of A, B, C, and D. The response from each system was fed into 

the PMd units (depending on the inhibition for the MF system’s response).  

Similar to the previous simulation, the circuit was modeled as a small-scale representation 

of the respective brain areas to hold a unit of STN cell and a unit of preSMA cell. With four options 

altogether, the model had four PMd units, one for each category option (A, B, C, and D). Each unit 

of cells represented the activity of the respective cell group.  

The model was adjusted to accommodate the trial-by-trial switching task for three groups 

of participants: young adults, older adults, and people with Parkinson’s disease. Importantly, 

switchers and non-switchers were not separately simulated as in Section 3. This is because Hélie 

& Fansher (2018) showed that this was an important outcome variable that differed across age 

groups. Hence, the three groups were simulated with mixed switchers and non-switchers where 

the proportion of switchers to non-switchers was a model outcome (i.e., dependent variable) based 

on the manipulation of parameters to achieve the simulation of the specific participant group. To 

include both switchers and non-switchers in a group, the model was built so that the parameters 
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γMF and 𝐷 varied between participants, while all other parameters were fixed for simulations in 

the same group. The ‘participants’ were normally distributed and the parameters γMF and 𝐷 were 

computed using a logistic function. Because both parameters should be modeled independently, 

the ‘participant’s’ distribution was obtained twice, once for each parameter. The parameters used 

in the simulation of the experiment that were common for all three groups of participants were as 

shown in Table 5. 

 

𝛾𝑀𝐹 = 0.05 × 𝑓(𝑥), 𝑥~𝑁(µ𝑀𝐹 , 3) 

 

(3) 

𝐷 =  0.99 × 𝑓(𝑥), 𝑥~𝑁(µ𝐷 , 2.475) (4) 

 

where f(x) is the usual logistic function, 𝑓(𝑥) =  
1

1+𝑒−𝑥 , µMF is the mean used to define the 

distribution of 𝛾𝑀𝐹 for different participants, and µD is the mean used to define the distribution of 

𝐷 for different participants. 𝛾𝑀𝐹 ranged from 0 to 0.05, while 𝐷 ranged from 0 to 0.99.  

 

Table 5. Parameter values used in the simulation of trial-by-trial categorization that were 

common for all three groups of participants. 

Model-level Parameter Value 

MB and MF 𝑅𝑀𝐵𝑅𝐵 (Eq. 1) 0.42 

𝑅𝑀𝐵𝐼𝐼 (Eq. 1) 0.2 

Perceptual cues 𝛾𝑆 for MB strategy (Eq. A12) 0.1 

𝛾𝑆 for MF (Eq. A12) 0.006 

𝑆𝑚𝑎𝑥 for MB strategy (Eq. A12) 0.3 
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𝑆𝑚𝑎𝑥 for MF strategy (Eq. A12) 0.03 

Note. Parameters not included share the same values from the previous simulation (see Tables 2-

3).  

 

The goal of the simulation was to fit the data according to the three groups of participants. 

We fitted the model to find the parameters that govern switching between the systems that are 

affected by the change in aging. The changes in such parameters were reflected in the differences 

in the accuracy learning curve, accuracy switch cost, and switching proportions in the three groups 

of participants.  

4.1.1 Modeling group differences 

The three groups of participants were differentiated by adjusting the value of  

µMF, µD, and 𝑅𝑆 (working memory’s proactive interference). The value of the three parameters 

that set apart the three groups are tabulated in Table 6. Generally, the combination of higherµMF 

and µD values, and a lower 𝑅𝑆, value facilitated the switching capabilities. 

 

Table 6. The difference in parameter values of the model to simulate the three groups of 

participants 

 

Parameters 

Value 

Young Adults  Older Adults People with Parkinson’s Disease 

µMF (Eq. 3) 0.08 -0.21 -0.35 

µD (Eq. 4) 1.5675 0.3795 0.1980 

𝑅𝑆 (Eq. A6) 0.4 0.7 1.2 
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µMF is the mean of the normal distribution of ‘participants’ in a given group. From the 

simulation, µMF for young adults is the highest, followed by older adults and people with 

Parkinson’s disease. A higher µMF leads to a higher range of 𝛾𝑀𝐹 for the given group. Both µD 

and 𝑅𝑆 are related to the resistance to proactive interference, which is known to be affected by 

aging (Lustig et al., 2001). Similar to µMF, µD is the mean of the normal distribution of participants 

in a group used to derive the exponential decay rate for proactive interference, 𝐷. A lower µD in 

the given group led to a fixed range of 𝐷 with lower values. This implies that more participants in 

the group have a lower decay of proactive interference. 

4.1.2 Accuracy Learning Curve 

One category outcome, either category A, B, C, or D was chosen for each trial. If the 

suggested category outcome from the model matched the actual category of the stimulus, the model 

received feedback with the value 1, and 0 otherwise. The model only simulated the choice option 

of A and B for RB tasks and C and D for II tasks. The simulation did not support the cross selection 

of choice in different tasks (i.e., choosing option C or D in an RB task, or choosing option A or B 

in an II task). For each simulation, the categorization accuracy for each block of 100 trials was 

computed. The accuracy learning curves are shown in Figure 8. The RMSD was approximately 

1.8%.   

4.1.3 Proportion of Switchers 

Unlike the previous task simulation where switchers and non-switchers were simulated 

separately, the simulation of the trial-by-trial task switch experiment required simulation of mixed 

switchers and non-switchers in a group of participants. The proportion of switchers reflects the 
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property of the participant group as the model’s output by varying parameters. To compute the 

proportion of switchers, only the last block of the experiment (the intermixed trials) was considered. 

We were interested in investigating the causal mechanism that determined whether all three groups 

of participants were able to switch between systems. 

Switchers were identified as ‘participants’ that could switch between the learning systems 

in the switching task. Note that, similar to Section 3, there are many ways that a participant could 

be classified as a non-switcher. For example, one may have learned correctly in the RB and II 

phases but not flexibly switch system during the mixed block. Alternatively, one may have failed 

to learn either the RB or II categories. As a result, the non-switchers group is again more 

heterogeneous then the switchers group, and results from non-switchers should be interpreted 

carefully.  

In the model, the switching task was associated with different learning systems in obtaining 

the optimum performance (MB for RB task and MF for II task). Thus, we compared the overall 

output response of the model and the responses of the learning systems for each trial in the last 

block of the experiment. In the II task, the majority of the overall response of the switchers should 

follow the response of the MF system. In the RB task, the majority of the overall response of the 

switchers should follow the response of the MB system. If the ‘participant’ failed to do so, they 

were labeled as non-switcher. The proportion of switchers for the three groups is shown in Figure 

9. The RMSD was 0.038. 

4.1.4 Accuracy Switch Cost 

Accuracy switch cost was also computed based on the last block of the experiment: the 

intermixed RB and II trials. Because this involves task switching, the first trial after a task switch 
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was labeled a “switch” trial, while the remaining trials were labeled “stay” trials. The overall 

response of the trials was compared to the corresponding actual category of the stimulus for the 

same trials. Mean accuracy for switch and stay trials were computed separately. The accuracy 

switch cost was obtained by subtracting the mean accuracy of the switch trials from the mean 

accuracy of the stay trials. The accuracy switch costs for switchers and non-switchers for all three 

groups of participants are shown in Figure 10. The RMSD was 0.015. 

In the simulation, when compared to the experiment from Hélie and Fansher (2018), a 

similar trend for accuracy switch cost for all three groups was observed. In young adults, the 

accuracy switch costs for switchers and non-switchers were about the same. Older adults had 

higher accuracy switch costs when compared to young adults for both switchers and non-switchers. 

Older adult switchers had higher accuracy switch cost when compared to the non-switchers of the 

same group. The accuracy switch cost of people with Parkinson’s disease was the highest among 

non-switchers, however, the accuracy switch cost of people with Parkinson’s disease was the 

lowest among switchers. The same reversal effect was observed in the experimental data from 

Hélie and Fansher (2018). This was likely caused by the small number of switchers in the 

Parkinson’s group. 

4.2 Discussion 

The previous simulation results suggest an important role for system confidence and 

proactive inhibition in system-switching. Both of these cognitive capacities (i.e., updating and 

inhibition) are executive functions (EF) (see Miyake et al., 2000). Interestingly, evidence suggests 

that the prefrontal cortex plays an important role in supporting EF (Fuster, 2008), which overlaps 

with the proposed new switching mechanism. It is also worth reminding the reader here that even 



Computational model of prefrontal and striatal interactions 

 

43 

among young adults, about half of the participants fail to switch systems in this task (Hélie, 2017). 

It is thus possible that individual differences in EF in this population contributes to one’s ability 

to switch between systems. The remainder of Section 4.2 discusses how these model components 

differed between groups. In Section 5 we present a new behavioral experiment that directly tests 

the novel model prediction that individual differences in EF can account for individual differences 

in system-switching in young adults. 

Higher γMF  accounts for faster confidence learning in the MF system when receiving 

positive reinforcement. The majority of young adults had a faster learning rate of the MF system 

confidence. This allowed for system-switching at a higher pace. As a result, groups with higher 

γMF generally had a greater proportion of switchers as shown in Figure 9. The effect of higher γMF 

was also reflected in the steeper increase in accuracy in the II training blocks in Figure 8. Because 

most young adults had a higher γMF, they were faster to pick up the optimal strategy (i.e., switch 

to the MF system) compared to the other older age groups. This suggests that better updating 

system confidence based on one’s performance may increase the probability of being able to switch 

systems when appropriate. 

In addition to differences in system confidence, the simulations also used higher values of 

µD for young adults, followed by older adults and people with Parkinson’s disease. This indicates 

that young adults generally had faster exponential decay for proactive interference after a switch 

(parameter 𝐷). Thus, interference from previously relevant information or rules was reduced at a 

higher rate. In contrast, older adults and people with Parkinson’s disease generally had a lower 

decay rate which indicated increased resistance to deactivating previously relevant information 
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(i.e., perseveration). As a result, the two groups had a harder time switching to a ‘new’ system that 

is more appropriate for the current task.  

On the other hand, a reverse trend was observed for 𝑅𝑆, whereby the 𝑅𝑆 of young adults 

was generally lower than for the older groups and people with Parkinson’s disease. With 𝑅𝑆 being 

the effect of the perceptual cue’s decay on the preSMA input, higher 𝑅𝑆 indicated greater proactive 

interference effects in the case of task switching to the preSMA cells. In the intermixed trials, task 

switching was frequent (a switch happened every few trials), and rapidly abandoning a strategy 

from one trial to another was required for optimal performance. The combination of lower 𝐷 and 

higher 𝑅𝑆 made switching from the MB to MF system harder. The previously relevant information 

was harder to be suppressed in the ‘new’ task that required relying on a different system for optimal 

performance. Thus, the accuracy performance shown in block 6 of Figure 8 was lower. The number 

of switchers in such groups was lower compared to the groups with higher  

µD and lower 𝑅𝑆 (Figure 9). This suggests that better inhibitory processes can reduce switch cost 

and lead to faster switching. 

5 Can individual differences in executive function account for trial-by-trial system-

switching performance? 

Given the results obtained by Hélie and Fansher (2018), and the simulation results 

presented in Sections 3 and 4, it is possible that individual ability in system-switching could be 

related to individual differences in EF. That is, even among healthy, young adults, there is variation 

in performance, in terms of which individuals are classified as switchers and which are categorized 

as non-switchers. The highly-cited EF taxonomy introduced by Miyake et al. (2000) provided 

evidence that individual differences in updating, inhibition, and shifting are separable but 
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interrelated EF processes in young adults (see also Friedman et al., 2008, for genetic evidence 

supporting this model). While a systematic review of the latent-variable EF literature showed that 

the three factors of updating, inhibition, and shifting was not universally obtained in all samples, 

there was substantial evidence for the Miyake/Friedman model in many studies that tested young 

adults (Karr et al., 2018). These three separate components of EF are directly related to the results 

of Section 4’s simulation in that EF inhibition is related to proactive interference in the model, EF 

updating is related to changes in system confidence in the model, and EF shifting is related to 

system-switching itself in the model. We tested this novel model prediction by measuring EFs in 

a sample of young adults and then testing them in a trial-by-trial system-switching experiment. 

5.1 Methods 

5.1.1 Participants  

Fifty-nine undergraduate students were recruited for this study and were compensated with 

partial course credit for their participation. Participants were young adults recruited from the 

introductory psychology subject pool of Purdue University. All procedures were approved by the 

Purdue University Institutional Review Board. 

5.1.2 Design 

Participants completed two separate experimental sessions for the categorization and EF 

measures. Session order was counterbalanced across participants. The experiment was 

predominantly a between-subjects design where group (switcher or non-switcher) was determined 

at the analysis stage based on performance in the categorization task. 
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5.1.3 Materials 

5.1.3.1 Categorization Task 

Circular sine-wave gratings of constant contrast and size, occupying ~ 5° of visual angle 

were presented to participants on a 21-inch monitor (1,920 × 1,080 resolution). The stimuli were 

defined by a point in 2D space where the dimensions were frequency and rotation angle. Frequency 

was indicative of bar width and was calculated in cycles per degree (cpd), while rotation angle was 

the angle of the counterclockwise rotation of the bars from the horizontal as calculated in radians. 

The stimuli were the same as those used in Hélie & Fansher (2018) (and shown in Figure 7).  

Stimuli were generated into an arbitrary 200 × 100 coordinate system using the 

randomization technique of Ashby and Gott (1988) and were separated into four categories 

arbitrarily labelled with letters A-D (See Figure 7). Category A and B structures are II and were 

generated using bivariate normal distributions: μA = (42, 80), ∑A = (145 135; 135 145), μB = (58; 

64), ΣB = ΣA. Category C and D structures are RB and were generated using bivariate normal 

distributions: μC = (138, 72), ∑C = (10 0; 0 280), μD = (162, 72), and ΣD = ΣC. The arbitrary 

200×100 coordinate system was then re-scaled into frequency × orientation space using a non-

linear transformation (Hélie, 2017). This yielded stimuli ranging in frequency from 0.29 to 8.6 cpd 

and from 34° to 95° in orientation (counterclockwise from horizontal).  

The screen background color during the task indicated the possible category choices to 

participants: II stimuli (A or B) were presented on a green background and RB stimuli (C or D) 

were presented on a blue background. To perform well, participants would have to rely on a MF 

system when categorizing A/B stimuli and the MB system when categorizing C/D stimuli.  
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The session was divided into 7 blocks of 100 trials (700 trials total). For each trial a 

crosshair was presented for 1,500 ms with either a blue or green background (signaling a RB or II 

trial respectively). Adding preparation time has been shown to reduce the accuracy switch cost for 

participants who can switch between systems on a trial-by-trial basis (Hélie, 2017). After 1,500 

ms the crosshair was replaced by a stimulus where the background color indicated possible 

response choices (green - A/B, blue - C/D). The stimulus disappeared from the screen after the 

participant made a response and auditory feedback was presented: a high pitch tone for a correct 

response, a buzz sound for an incorrect response, and a two-note sound for an incorrect key 

selection (see Figure 7B for an example trial).  

Stimulus presentation, feedback, and response recording were displayed and acquired 

using Matlab. Participants gave responses on a standard keyboard: the ‘s’ key was used for 

category A, the ‘d’ key was used for category B, the ‘k’ key was used for category C, and the ‘l’ 

key was used for category D. Response keys A and B were covered with blank green stickers 

indicating their use for II trials and response keys C and D were covered with blank blue stickers 

indicating their use for RB trials (matching the background). The category labels (A–D) were 

displayed at the bottom of the screen below the stimulus mapping the response buttons on the 

keyboard. Participants responded to A/B stimuli with their middle and index fingers on the left 

hand and responded to C/D stimuli with their middle and index fingers on the right hand. 

Prior work has found that switching the locations of response keys affects II categorization, 

but not RB categorization (Ashby et al., 2003). To test whether degree of interference interacts 

with ability to switch between categorization systems, during the last block of the experiment, the 

button labels were switched. The button or key associated with category A was now the button or 
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key previously associated with category B and vice–versa. Likewise, the button or key associated 

with category C was now the button or key previously associated with category D and vice-versa. 

During this block the labels at the bottom of the computer screen were changed to match this 

alteration (so they now read B, A, D, C). 

5.1.3.2 Executive Function Tasks 

Below we list the tasks used to measure EF, based on the framework originally specified 

by Miyake et al. (2000). 

5.1.3.2.1 Continuous counters (Morey & Cowan, 2004; Redick et al., 2016; Shipstead et al., 2012) 

 Participants were presented with a series of shape stimuli and had to keep a running count 

of the number of squares, circles, and triangles presented for each trial. Shapes were presented one 

at a time, and the ordering of the different types of shapes was random. At the end of each trial the 

participant had to report the number of presentations for each shape which varied from three to six 

presentations. Participants made responses with the number keypad. During each trial the shape 

type presented to participants was changed six to seven times and the number of shape 

presentations varied. Following the presentation of a 500 ms fixation cross, each shape was 

presented until the participant pressed the spacebar to continue. At the end of each trial, 

participants had as much time as needed to recall the number of triangles, squares, and circles 

presented in the trial. Participants were told to be as accurate as possible in their recollections and 

speed of response was not emphasized. Participants completed three practice trials followed by 15 

test trials. 
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5.1.3.2.2 Antisaccade (Hallett, 1978; Kane, Bleckley, Conway, & Engle, 2001; Redick et al., 

2016) 

Participants were tasked with identifying a backward-masked B, P, or R that was briefly 

presented on the screen for each trial. For each trial a duration fixation screen consisting of a string 

of asterisks was presented for a variable period of time (200, 600, 1,000, 1,400, or 1,800 ms), 

followed by a flashing equal sign cue (oncreen 100 ms, offscreen 50 ms, onscreen 100 ms). 

Immediately after the cue, the backward-masked B, P, or R was presented for 100 ms. Participants 

were responsible for identifying the presented letter with a key press. The left, down, and right 

arrow keys on a standard keyboard were labelled with stickers marked as B, P, and R, respectively. 

They were asked to use their index, middle, and ring fingers of their right hand on the buttons 

labelled B, P, and R to make their responses. Accuracy was emphasized to participants and there 

were no specific instructions regarding speed of response.  

The experiment started off with 18 response mapping trials where both the cue and letter 

were presented in the center of the screen. In the first half of these trials, the cue (=) was presented 

for 250 ms and in the second half the cue was presented for 100 ms. This was to initially get 

participants acclimated to task timing as this would be the cue duration during the real trials. They 

then completed 18 practice trials where the first 9 trials were prosaccade, in which the cue and 

letter appeared on the same side of the screen, and the second 9 trials were antisaccade where the 

cue and letter appeared on different sides of the screen. These trials are crucial for measuring 

inhibitory control as attention tends to be captured by the flashing cue on the opposite side of the 

screen, making it difficult to identify the briefly presented letter. Feedback was provided for all 

practice trials. Following the practice trials participants completed 36 test trials, all of which were 
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antisaccade where the stimulus presentation for each trial was equally divided between left and 

right locations. No feedback was provided during these test trials. 

5.1.3.2.3 Go/no-go (Robertson et al., 1997; Wiemers & Redick, 2019)  

Participants completed a numerical version of the sustained-attention-to-response task 

(SART) as a measure of response inhibition. Participants were presented with a series of individual 

numbers ranging from 0-9 and were tasked with pressing the spacebar with their dominant hand 

as quickly as possible each time a number was presented (“go” trials); however, they were asked 

to withhold this response when the number presented was a “3” (“no-go” trials). Each number was 

shown for a maximum of 300 ms before a row of uppercase X’s was presented as a mask for 900 

ms. Participants were able to press the spacebar anytime within 1200 ms. If the spacebar was 

pressed during the first 300 ms, the program would then show the 900 ms mask. Each number 

presentation is considered to be a trial. Participants were given 10 practice trials followed by 240 

real “go” and 30 real “no-go” trials that were randomly intermixed. They were told to respond as 

quickly and accurately as possible. 

5.1.3.2.4 Running span matrix (Redick, 2016; Redick, Wiemers, & Engle, 2020)  

During each trial participants viewed a 4 × 4 grid and were instructed that they would have 

to recall, in order, the locations of the last n red squares that would appear on the grid. Each red 

square was presented for 300 ms (200 ms ISI), and at the end of the trial, participants viewed a 

blank 4 × 4 grid and had to click the locations of the last n red square presentations in order. 

Accuracy was emphasized for this task and no instructions were given regarding speed of response. 
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Participants first completed four practice trials where n = 2, followed by 12 real trials where n = 4 

(where there were 2 trials each of a list length of 4, 5, 6, 7, 8 and 9).  

5.1.3.2.5 Keeping track (Engle, Tuholski, Laughlin, & Conway, 1999; Redick et al., 2016; 

Yntema & Mueser, 1962) 

Before viewing a list of words presented one at a time, participants were given two to six 

different categories (metals, animals, colors, distance, countries, or relatives). All categories were 

cued an equal number of times during the task. Participants had to remember the last item presented 

in the list that belonged to each category. Each list consisted of 16 words, with each word shown 

for 1,500 ms (250 ms ISI). After the last word was shown, participants used the mouse to select 

the most recently presented exemplar for each category out of 6 presented words. Participants were 

told to accurately recount the exemplars and there was no emphasis on speed of response. 

Participants first completed four practice trials, two trials with one-category lists and two trials 

with two-category lists. They then completed the experimental block with three trials each of two-, 

three-, four-, five-, and six- category lists randomly intermixed.  

5.1.4 Procedure  

Undergraduate students were recruited from the introductory psychology participant pool 

to take part in a multi-session study. In one, 1-hour session participants completed all EF measures, 

and in a separate 1-hour session participants completed the categorization task, with session order 

counterbalanced across participants. Participants had to complete both sessions within a week-

long time period and were not allowed to complete both sessions on the same day.  
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5.1.4.1 Categorization Session  

Participants were told that they would complete a categorization task and that they would 

need to learn the category membership of stimuli through trial-and-error learning. Participants 

were told to accurately categorize the stimuli, with no instruction regarding speed of response. 

They were shown an example stimulus and were told that the bars of the sine-wave grating would 

vary in width and orientation, and that their categorization judgements would be based on these 

features.  

The procedure was identical to the 1–session preparation (1S/PREP) condition in Hélie 

(2017). The experiment lasted about 55 minutes and consisted of 700 trials, equally divided into 7 

blocks. Participants were allowed to take short breaks between blocks. Block 1 consisted of RB-

only categorization, Blocks 2-5 consisted of II-only categorization, Block 6 intermixed RB and II 

trials and required participants to switch between MF and MB systems on a trial-by-trial basis, and 

Block 7 was similar to Block 6 except these trials included the button–switch component described 

earlier. They were given longer to learn II categories as prior work has shown that II category 

structures are more difficult to acquire than RB (Hélie & Ashby, 2012). 

Prior to completing Block 1, participants were told that for trials with a blue background 

(RB trials), bar width would determine membership, that stimuli would belong to category C or D, 

and that they would respond by selecting one of the two blue buttons on the keyboard. Following 

Block 1, they were told that for trials with a green background (II trials), bar width and orientation 

would determine category membership, that stimuli would belong to category A or B, and that 

they would respond by selecting one the two green buttons on the keyboard. Participants were 

informed about the button–switch component of Block 7 prior to completing that block. Due to 
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the complexity of the task instructions, the experimenter stayed with the participants for the first 

few trials to ensure that they correctly understood the task. 

5.1.4.2 EF Session  

Participants completed all five EF measures during this session in the following order: 

continuous counters, go/no-go, running span, anti-saccade, and keeping track. The experimenter 

gave participants instructions before the start of each task and was present during the entire session 

so that they could initiate the experimental program for each task.  

5.2 Results 

Data were excluded from five participants for being under the age of 18 (n = 1), failing to 

attend both sessions (n = 3), or experimenter error (n = 1). 

5.2.1 Categorization Task  

A model-based (DBM) analysis identified participants who could or could not switch 

between MF and MB systems on a trial-by-trial basis (see Ashby & Crossley, 2010; Hélie, 2017; 

Hélie & Fansher, 2018). To make this classification, participant performance in the intermixed 

trials block (Block 6) was separated by II and RB trials and then DBMs were fit separately to these 

data (Ashby, 1992; Maddox & Ashby, 1993). Hélie et al. (2017) describe three classes of decision-

bound models including guessing and rule-based models (both MB), as well as procedural-learning 

models (MF). The RB and II data were fit to these models and the best models were selected using 

the Bayes information criterion (Hélie, 2006). The optimal model for the RB data was rule-based 

(MB), while the optimal model for the II data was MF (see Figure 7). Participants whose data were 

best fit by the optimal models were labelled as “switchers”, as they demonstrated that they could 
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effectively switch between systems. All other participants were labelled as “non-switchers”.  In 

line with previous studies with an undergraduate sample (Hélie, 2017; Hélie & Fansher, 2018) 

who found that approximately 50% of students were switchers, 46.30% of participants (n = 25 out 

of 54) were labelled as switchers.  

5.2.2 Executive Function Measures  

All tests were run as independent samples t-tests comparing means between “switcher” and 

“non-switcher” groups.  

5.2.2.1 Updating 

Three tasks were used to measure updating ability. The primary measure of updating was 

accuracy in the Continuous Counters task (Redick et al., 2016), as participants had to continuously 

update their mental tally of the number of times each shape had appeared. Participants in the 

“switcher” group performed significantly better on this measure than the “non-switchers”. 

Levene’s test for equality of variances was significant (F = 14.29, p < .001), so performance was 

compared between groups without the assumption of an equality of variances (MD = .08, t(33.87) 

= -2.55, CI95% = [-.15, -.02], p = .02).  

The total number of correct items on the Keeping Track task was also considered a measure 

of updating performance as one must continuously update each category with the most recent 

exemplar as the list of words is presented. Accuracy was compared between “switchers” and “non-

switchers”, and there was no significant difference (MD = -2.9, t(52) = -1.4, CI95% = [-7.2, 1.3] , p 

= .17).  
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The total number of correct items on the Running Matrix Span task was also compared 

between “switchers” and “non-switchers” as a measure of updating performance, as one must 

continuously keep track of the locations where red squares have appeared in the grid. There was 

no significant difference between switchers and non-switchers (MD = -3.54, t(52) = -1.71, CI95% 

= [-7.69, .60], p = .10).  

Lastly, a composite updating score was created by z-scoring and averaging the three 

previous measures together. Levene’s test for equality of variances was significant (F = 4.82, p 

= .03), so performance was compared between groups without the assumption of equality of 

variances (MD = .49, t(45.38) = -2.40, CI95% = [-.89, -.08], p = .02), with switchers having a 

significantly greater updating composite score than non-switchers. 

5.2.2.2 Inhibition  

Two tasks were used to measure inhibition. The antisaccade task is considered a measure 

of inhibition as one must ignore an irrelevant flashing distractor. Accuracy on the antisaccade test 

trials was compared between “switchers” and “non-switchers” and there was a significant effect 

of switch status on accuracy (MD = .10, t(52) = -2.04, CI95% = [-.19, -.002], p = .046), with 

switchers showing greater accuracy.  

Performance on the go/no-go task was also considered a measure of inhibitory control, as 

one must refrain from pressing the spacebar when presented with a specific stimulus. Accuracy on 

no-go trials was compared between groups and there were no significant differences (MD = .03, 

t(52) = -.60, CI95% = [-.15, .08], p = .55).  
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To create a composite inhibition score, anti-saccade and go/no-go accuracy were z-scored 

and averaged. There was no effect of switch status on the composite measure of inhibition (MD 

= .35, t(52) = -1.64, CI95% = [-.79, .08], p = .11).  

5.2.2.3 Shifting  

To assess shifting ability, RT switch cost on the Continuous Counters task was examined. 

RT switch cost was defined as the difference in RT when one views two of the same shapes 

sequentially as compared to viewing to different shapes sequentially (Unsworth & Engle, 2008). 

Whether or not one was a switcher did not significantly predict switch cost on the Continuous 

Counters task (MD = 87.08, t(52) = -1.73, CI95% = [-187.96, 13.79], p = .09). 

5.3 Summary and discussion 

Figure 11 summarizes the results obtained with the composite scores. As can be seen, 

successful system-switching in the categorization task was related to updating ability, with better 

updating for participants who could switch on a trial-by-trial basis. However, switchers and non-

switchers did not significantly differ in performance on inhibition and shifting composites. Hence, 

system-switching was related to a specific aspect of EF, namely updating. This result partially 

supports the model predictions from the previous sections, in that updating in system confidence 

based on performance was an important component of the models for system-switching. However, 

the model also predicted that inhibitory processes would be important in reducing switch cost and 

thus facilitating switching. The experiment found partial evidence supporting this prediction, with 

switchers performing better in the antisaccade task. However, the inhibition composite score did 

not support this prediction in a young adult sample. Note that the model predictions were generated 
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using different age groups. It is possible that the variance in inhibitory process among young adults 

was not sufficient to predict system-switching. In addition, Friedman and Miyake (2004) showed 

that there are distinct and separable aspects of inhibition that might differentially relate to system-

switching. This could explain the different results obtained in the antisaccade and go/no-go tasks. 

Future work should address this possibility. 

 

 

Figure 11. Performance on measures of executive function by switch group. Note that values on 

the y-axis represent z-scores, where a higher value indicates better functioning. 

 

6 General Discussion 

This article proposed a new computational model of how interactions between the 

prefrontal cortex and the striatum can be used to account for switching between MB and MF 

systems in category learning. The work began with the observation that many participants fail to 
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switch away from a MB system to an optimal MF system when categorizing II stimuli (Ashby & 

Valentin, 2017), and results from human experiments were used to build a computational model 

that simulated a neurobiological circuit that facilitates learning system-switching in categorization 

tasks. The model was designed based on the hyperdirect pathway of the cortico-basal ganglia 

network. It incorporated Izhikevich’s (2007) firing model for the neuronal cells in the brain areas 

involved, including the preSMA, STN, and PMd. Model-based and MF systems each generated 

their responses for every stimulus in every trial. In each trial, one response was selected as the 

output of the model. The proposed new model was focused on the selection process. The model 

was used to simulate two different types of system-switching: (1) self-initiated system-switching 

in an II categorization task published in Lim & Hélie (2019) (Section 3), and (2) trial-by-trial cue-

based system switching of different age groups from data published in Hélie & Fansher (2018) 

(Section 4). The model was able to reproduce accuracy learning curves, predict the proportion of 

switchers for different age groups of participants, and predict the accuracy switch cost in trial-by-

trial switching tasks.  

The simulation results also suggested that system-switching ability may be related to 

individual differences in updating and inhibition (two executive functions). To test this hypothesis, 

Section 5 presented a new behavioral experiment that used a battery of EF benchmark tasks and 

the same participants were also put in a trial-by-trial system-switching task. The results showed 

that participants who were able to switch systems from trial-to-trial in the perceptual categorization 

task had a higher composite updating score, an important component of EF. The next subsections 

present a review of the most important features and accomplishments of the proposed new model. 
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6.1 Key Features 

Unlike other models of category learning, the proposed new model focuses on the 

biological system-switching mechanism from MB to MF systems. In contrast, most of the available 

category learning models highlight the mechanism of response generation and selection. The 

emphasis on the neurobiological simulation enables a deeper understanding of how switching 

between two learning systems can be accomplished in the brain. In the model, system-switching 

is facilitated by the hyperdirect pathway in the basal ganglia. The brain areas involved are the 

preSMA, STN, and PMd. MB and MF systems are modeled as black boxes that output responses 

based on their respective accuracy probability in the current task. The responses from the two 

systems are generated independently. Critically, system-switching is depicted as the reduction of 

inhibition of the response of the MF system into PMd units. The STN acts as the gate for the MF 

system’s response to activate the PMd units. If the activity of the MF system is lower than the 

inhibition from the STN, the MF system’s response is prevented from activating the PMd units. 

However, if the activity of the MF system is higher than that of the STN, the response of MF 

system can activate the PMd units.  

6.2 Model Predictions 

The proposed model was able to show learning of system-switching through the reduction 

in STN’s inhibition of the MF system’s response into PMd units. System-switching was possible 

when the following criteria were met. First, MB-RL was not the optimal system to learn the task, 

e.g., when the MB system failed to provide accurate responses over time, the confidence in the 

MB system decreased with increasing inaccurate attempts at categorizing the stimulus. This was 

fed into the preSMA as feedback, which lowered the activation of the preSMA and reduced the 
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STN activity. With reduced activity, the MF system’s response inhibition to the PMd units by the 

STN faded, allowing the response of the MF system to activate the PMd units. This increased the 

likelihood of selecting the response of the MF system as the overall response. This process showed 

system-switching when the MB system failed, and the MF system took over to respond. One 

important prediction of the proposed model is that it predicts a “hard” switch. Once the model has 

switched from the MB system to the MF system, it cannot switch back to MF. This is because 

confidence in the MF system can only increase, and the maximum confidence in the MF system is 

constrained to be higher than the maximum confidence in the MB system. The only case where 

the model can switch from MF back to MB is when the switch is prompted by a cue (as in Sections 

4-5). 

Second, with the success of categorizing the stimuli, after numerous trials, the MF system 

gained enough confidence whereby its activity exceeded the inhibition emitted by the STN. This 

allowed the MF system’s response to be transmitted to the PMd units for action selection. This 

process may result in system-switching from MB to MF after extensive training, even if the MB 

strategy is optimal for the task. This is because the model predicts that system-switching should 

eventually happen regardless of the presence of perceptual cues even in the trial-by-trial switching 

tasks if the two criteria aforementioned were met. The ability to switch between systems was 

observed when parameters were adjusted to cater to low confidence in MB and high confidence in 

the MF system. This could provide a route towards the development of automaticity (Hélie et al., 

2015). 

Third, in addition to feedback-driven system confidence, the model also showed that 

individual differences in executive function could affect switching ability. We were able to fit the 
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model to participants from different age groups in a category learning task that involved trial-by-

trial switching and show how aging affects categorization system-switching. The model was able 

to reproduce the accuracy learning curve, switch cost, and proportion of switchers that were shown 

in the experimental results. The difference in the switching capabilities in young adults, older 

adults, and people with Parkinson’s disease was simulated by adjusting the parameters that 

governed the learning rate of the MF system’s confidence (as in previous simulations) but also the 

decay in proactive inhibition. We found that fewer participants in the older age groups (older adults 

and people with Parkinson’s disease) had a high learning rate of the MF system’s confidence, 

making system-switching difficult. It is unclear at this point where the MF system’s confidence is 

located, but with their role in reward uncertainty and motivation, the ventral PFC and striatum are 

plausible loci (Hélie et al., 2017). In addition, more participants in the older age group suffered 

from proactive inhibition interference when tasks switched frequently. Proactive interference 

makes it difficult to switch when the tasks demand different responses to similar stimuli. 

Consistent with model results, previous work has shown that older adults (Hull et al., 2008) and 

people with Parkinson’s disease (Dirnberger & Jahanshahi, 2013) generally have EF deficits. 

These deficits may be related to decreases in tonic dopamine levels (Hélie et al., 2012). 

6.3 Extensions, Improvements, and Future Work 

Once choice that needs to be made when designing any computational models is what 

processes should be directly modeled and what processed can be abstracted as black boxes. Should 

the visual system be modeled? Or should the model input be a feature-based representation? What 

about the motor output? In the proposed model, the decision systems were included as black boxes. 

This choice has some advantages. For example, the model is simpler and provides a more intuitive 



Computational model of prefrontal and striatal interactions 

 

62 

understanding of the switching process – which was the focus of the current work. It also makes 

the switching model more general. The decision systems could be replaced by one’s favorite MF 

and MB models of category learning without changing the functioning of the switching model. 

However, this lack of detailed system modeling also came at a cost. The main one being that the 

possible interaction between the learning processes within each system and the switching 

mechanism is not accounted for. We now discuss consequences of this limitation in more details. 

First, while the current model was able to match and predict system-switching through 

neurobiological circuits, it lacks the ability to simulate accurate response times in each trial. If the 

model could simulate response times, time-related switch costs could be simulated, which would 

add constraints to the model. From Hélie and Fansher (2018), switch cost was more apparent in 

response times as compared to just accuracy. Modeling the timing of each system (which are 

currently black boxes) and adding a motor component to the model could allow for this 

functionality. The result could provide a better reflection of the different switching capabilities of 

the different groups of participants. 

Second, the black box systems generated output based on a single source of accuracy 

probability (one for each task and learning system). However, even in a single task, the accuracy 

probability should vary throughout the session. Initially, without grasping a rule, participants 

should select the category by guessing or by chance. Over time, more rules are generated by the 

MB system and each rule has its accuracy probability. Depending on the accuracy feedback of the 

learning system, its accuracy probability can be adjusted from guessing (i.e., 50% for a two-choice 

category task) to the maximum value. Future work should add this functionality. 
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Finally, the model can also be applied to non-human animal studies. Although some aspects 

of the model would have to be adjusted to rescale the cognitive limitations of non-human subjects, 

the hyperdirect pathway model can still be implemented to simulate the system-switching 

capabilities in other primates. This would allow for matching single-cell recordings in the affected 

brain areas of the animals and more directly testing biological assumptions by accounting for 

biological data.  
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9 Appendix 

The proposed model must meet the requirement of having computationally simple neurons 

that can generate firing patterns exhibited by actual biological neurons (Izhikevich, 2007). 

However, the intention of the model was not to quantitatively fit neural activation, but to instead 

seek for a qualitative agreement. The Izhikevich model proves to be computationally efficient in 

producing rich spiking and bursting dynamics, as exhibited by neurons when simulating multiple 

neurons in real-time, while maintaining a certain level of biological plausibility. Each neuron in 

the preSMA and PMd was simulated as follows: 

 

100�̇� = 0.7(𝑣 + 60)(𝑣 + 40) − 𝑢 + 𝐼 + 𝑛𝑜𝑖𝑠𝑒 

�̇� =  −0.03[2(𝑣 + 60) + 𝑢] 

𝑖𝑓 𝑣 ≥ 35, 𝑡ℎ𝑒𝑛  𝑣 ← −50, 𝑢 ← 𝑢 + 100 

(A1) 

 

 

where v is the membrane potential, I is the input, u is an abstract term that describes membrane 

recovery variable for Na+ and K+ ion channel gating, and noise follows a normal distribution of 

N(0,1). 

The STN cells were modeled using an adaptation of Izhikevich’s firing model parametrized 

as follows (Michmizos & Nikita, 2011):  

 

�̇� = 0.04𝑣2 + 5𝑣 + 145.5 − 𝑢 + 1.3 𝐼𝑆𝑇𝑁 + 𝑛𝑜𝑖𝑠𝑒 

�̇� =  0.02[0.2𝑣 − 𝑢] 

𝑖𝑓 𝑣 ≥ 25, 𝑡ℎ𝑒𝑛  𝑣 ← −65, 𝑢 ← 𝑢 + 2 

(A2) 
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where, ISTN is input to STN cells. The parametrization of Eq. A2 was obtained by fitting the spike 

initiation dynamics of the STN cells. 

Each unit of cells in the model represents the activities of a tightly interconnected cell 

group. For each trial, each neuron model was given a time frame of 2000 ms. The activity of 

preSMA and STN cells started at time = 0 ms, while with the burn-in period, the PMd units started 

receiving input at time = 500 ms. Figure 3 shows an example spike train for each modeled neuron. 

Interneuron connections were simulated as synapses simplified by modeling the delays of 

spike propagation through the synaptic cleft. The simulation represented the gradual delivery of 

neurotransmitters from the presynaptic neuron to the postsynaptic neuron. A standard way of 

modeling the synapse is to use an α-function (Ashby & Hélie, 2011; Rall, 1967):  

 

𝑓(𝑡𝛼) =
𝑡𝛼

𝜆
𝑒𝑥𝑝(

𝜆−𝑡𝛼
𝜆

)
 

 

(A3) 

 

where tα is the time since the cell voltage reached vpeak and λ is a constant that determines the 

duration of signal propagation in the synapse. Greater λ values increase the delay in synaptic 

transmission. Every time the presynaptic neuron cell spikes, the α-function is delivered to the 

postsynaptic cell, with spiking time starting at t = 0. The α-function has a maximum value of 1.0 

and it decays to .01 at t = 7.64λ (Ashby & Hélie, 2011). If the propagation of neurotransmitters is 

still in process and a second spike is produced, a new α-function that corresponds to the second 

spike is added to the first α-function, giving an integrated α-activity. The latency in a typical 

synapse is generally less than 0.5 ms and this delay was approximated with λ = 60.  
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9.1 Model’s Circuit 

9.1.1 Response Generation in MB and MF systems 

As can be seen in Figure 4, the MB system was connected to the PMd and the preSMA. 

The MB response was fed into PMd units as input (the blue line). The response was then checked 

for its accuracy, and feedback for both the MB and MF systems were given separately. The 

connection from the MB system to the preSMA (the orange line) served as the confidence for that 

system ( 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ), which was fed into the preSMA as input for activation. Greater 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  increased the activity in the preSMA. 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  was adjusted with feedback 

from responses through learning.  

 The response of the MF system, on the other hand, was directed only to the PMd. This 

connection was dependent on the inhibition of the STN and feedback from the response. The STN 

received its input from the preSMA, whose activity was increased by greater 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. Thus, 

greater 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 increased activity in the STN, preventing the response of the MF system 

from reaching the PMd units.  

 Since the proposed model focused on the mechanism that facilitates switching between 

the MB and MF systems, both the MB and MF systems were modeled as black boxes. It was 

hypothesized that MB responses would be preferred in the beginning with high confidence, which 

leads to the inhibition of MF responses and prevents its activation from reaching the PMd cells. 

As discussed earlier, different categorization tasks may require a different learning system to 

maximize accuracy. Rule-based tasks should follow MB responses, whereas II tasks should follow 

responses from the MF system.  In II tasks, since responses from the MB system are considered 
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suboptimal, early errors from the MB system decrease 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. This weakens the inhibition 

of the MF system, slowly allowing the MF response to reach the PMd units.  

In a category learning task, participants are asked to categorize a perceptual stimulus. To 

simulate this situation, the model receives stimuli in the form of its desired categorization 

response.3 In a two-choice categorization task, if the stimulus belongs to category ‘A’, then the 

desired categorization response for the stimulus is ‘A’. The desired categorization response served 

as the input to the learning systems. Both MB and MF systems had preset accuracy probabilities 

(𝐴𝑐𝑐𝑀𝐵, 𝐴𝑐𝑐𝑀𝐹), and generated responses based on the accuracy probability independently. For 

instance, if the probability of MB accuracy was 0.8, MB had an 80% chance of producing the 

desired categorization response. Else the response should be the incorrect category. The same 

process independently applied to the MF system. As a result, the response of each system was 

independent, and one system could be accurate while the other may not be.  

The accuracy probability of each system is task dependent. For instance, the MB system 

has a higher chance of generating an accurate response in an RB task, as compared to its 

performance in an II task where the optimal solution requires relying on the MF system.  

The proposed model was also able to simulate accuracy performance in category learning 

tasks that demanded changing of the responding system on a trial-by-trial basis. This was 

implemented in the model with perceptual cues. Perceptual cues give a contextual indication to the 

participant as to whether or not they are performing the same task. In the proposed model, there is 

proactive interference from the previous task when switching from one task to another. As a result, 

                                                 
3 As a reminder, the proposed model does not learn to categorize stimuli; it only learns to switch between 

categorization systems. 
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performance in the new task might dip in the first few trials after a switch. However, in a learned 

task, the accuracy should be able to recover to a certain extent depending on the persistence of the 

interference. Accuracy probability of a system, 𝐴𝐶𝐶𝑀𝐵 is given as follows: 

 

𝐴𝐶𝐶𝑀𝐵 =  𝐴𝐶𝐶𝑀𝐵 𝑇𝑎𝑠𝑘 − [𝑅𝑀𝐵𝑇𝑎𝑠𝑘
(1 − 𝐷)𝑁] (A4) 

𝐴𝐶𝐶𝑀𝐹 =  𝐴𝐶𝐶𝑀𝐹 𝑇𝑎𝑠𝑘 (A5) 

 

where,  𝐴𝐶𝐶𝑀𝐵𝑇𝑎𝑠𝑘
 is the accuracy probability of the MB system in a given task, 𝑅𝑀𝐵𝑇𝑎𝑠𝑘

 is the 

proactive interference affecting the accuracy probability of the MB system for the current task, 𝐷 

is an exponential decay rate, and 𝑁 is the number of trials since the last task switch.  

9.1.2 Model free system inhibition 

The 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 indicated how confident the response from the MB system was, which 

affected the system switching process. 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ranged from 0 to 1 and was initially set to 0.99 

(in line with the bias observed in primates). As a result, the overall response followed the MB 

system at the beginning of the experiment, and this confidence could be adjusted based on trial-

by-trial feedback. 

With sufficient training, a participant may associate a RB task with an MB system response, 

and an II task with an MF system response. If a MB system response was ‘preferred’4 in a task, 

this part of the model increased the preSMA input to increase the inhibition of the MF system 

                                                 
4 We put ‘prefer’ in quote here because we are not assuming that subject have a conscious preference or make 

a volitional system switch. We take no position on whether participants can volitionally control system-switching. 
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response to the PMd cells. If a MF system response was ‘preferred’, the preSMA’s input was 

lowered to reduce the inhibition of the MF system response to the PMd cells.  

The associations between task cues and systems are represented by 𝐴𝑀𝐵 and 𝐴𝑀𝐹 . These 

values were calculated as follows: 

 

𝐴𝑀𝐵 =  𝑆𝑀𝐵[𝑣𝑐𝑅𝐵 + (1 − 𝑣𝑐𝑅𝐵)𝑅𝑆(1 − 𝐷)𝑁] (A6) 

𝐴𝑀𝐹 = 𝑣𝑐𝐼𝐼 × 𝑆𝑀𝐹 (A7) 

 

where, 𝑣𝑐𝑅𝐵 and 𝑣𝑐𝐼𝐼 are the presence of perceptual cue for RB and II tasks (respectively), 𝑆𝑀𝐵 is 

the association of MB responding with a RB perceptual cue and 𝑆𝑀𝐹  is the association of MF 

responding with an II perceptual cue, 𝑅𝑆 is working memory’s proactive interference decay effects 

on preSMA input,  𝐷 is the exponential decay rate (same as in Eq. A4), and N is the number of 

trials since the last task switch.  

 In the proposed model, vc was represented in the form of a binary input; when the 

perceptual cue was present, vc = 1, whereas when the perceptual cue was absent, vc = 0. The 

presence of a perceptual cue for an II task (𝑣𝑐𝐼𝐼 = 1) reduced the input to preSMA cells by a factor 

of 𝑆𝑀𝐹, which in turn reduced activation of the STN, thus encouraging the use of the MF system 

as the overall choice response. On the other hand, the presence of a perceptual cue for an RB task 

(𝑣𝑐𝑅𝐵 = 1) increased the inhibition of STN with stronger input to the preSMA cells by a factor of 

𝑆𝑀𝐵. Note that even when 𝑣𝑐𝑅𝐵 = 0, the interference of previously using an MB strategy may still 

linger with an exponential decay function even after the task was changed to an II task. Participants 

who failed to switch systems from task-to-task may have experienced a larger interference effect. 

These non-switchers might abandon an optimal responding system (e.g., MF responding in an II 
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task) during the frequent task switching trials and stick to a suboptimal responding system (e.g., 

MB responding in an II task). Crossley et al. (2018) showed that in a task intermixed with RB and 

II trials, some participants abandon their MF strategies to use either guessing or an MB strategy in 

the II task, but optimal strategy use was unaffected in the case of the RB task in the intermixed 

trials task. 

9.1.3 preSMA input and circuit connectivity  

The STN exerted an inhibitory activity on the MF system output to prevent the MF 

system’s response from reaching the PMd units. The activity of STN was dependent on the 

preSMA cells. The connection from preSMA to STN was excitatory. High 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 activated 

the preSMA, which led to the indirect inhibition of the MF system output. This resulted in the use 

of the MB response as the overall model response. 𝐼𝑝𝑟𝑒𝑆𝑀𝐴 fed into preSMA’s Izhikevich firing 

model as input and activated the unit accordingly. The nonnegative input to preSMA cells was in 

the form of a square function that varied with the presence of perceptual cues and confidence of 

MB:  

 

𝐼𝑝𝑟𝑒𝑆𝑀𝐴 = 130 × [𝐴𝑀𝐵  − 𝐴𝑀𝐹 + 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒]
+

 (A8) 

 

where, 𝐴𝑀𝐵 is the activation of the MB system with the presence of a cued RB task, and 𝐴𝑀𝐹 is the 

activation of the MF system with the presence of the cued II task (Eq. A6 and A7). [a]+ is a function 

that returns a if a is positive and 0 otherwise. 

9.1.4  STN input 

 The integrated α-activity from preSMA, 𝛼𝑝𝑟𝑒𝑆𝑀𝐴, served as an input to the STN: 
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𝐼𝑆𝑇𝑁 = 𝛼𝑝𝑟𝑒𝑆𝑀𝐴 (A9) 

where the α- function is defined by Eq. A3. 

9.1.5 PMd input and category selection 

With greater activation of STN, when the accumulation of its integrated α-activity 

exceeded the activity of the MF system, the response of the MF system was inhibited. The equation 

that governs the inhibition of the response of the MF system was given by: 

 

𝐼𝑃𝑀𝑑 = 70 × {(MBresponse) + [(𝑀𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 × 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) − (0.67 𝛼𝑆𝑇𝑁)]
+

} − 20 𝛼𝐿 (A10) 

 

where, 𝐼𝑃𝑀𝑑 is the input to PMd unit, MBresponse is the response of the MB system that feeds into 

the PMd unit, 𝑀𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  is the response of the MF system that feeds into the PMd unit, 

𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is the confidence of  the MF system, and  𝛼𝑆𝑇𝑁 is the integrated 𝛼-activity of the STN 

(as calculated using Eq. A3). In addition to the input, each PMd unit received lateral inhibition 

from the other PMd units in the form of αL. 

Initially, when the value of 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 was high enough, the activity of the STN was 

high enough so that the value of its integrated 𝛼 -activity was greater than the value of 

𝑀𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 × 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. The difference in the output from STN and the response of the MF 

system as shown in Eq. A10 was negative (which became 0 after applying the bifurcation function). 

Adding this term to the response of the MB system gave the input to the corresponding PMd unit. 

However, if the integrated 𝛼-activity of the STN was smaller than the value of 𝑀𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ×
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𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛), the difference was positive. Hence, the MF system’s response was not inhibited, 

and the response from the MF system was added to the response of the MB system as the input 

into the PMd unit. 

The PMd unit with the integrated α-activity that reached the decision threshold first was 

selected as the response of the overall system. If the α-activity of all units reached the threshold at 

the same time, the choice was random. If no units reached the threshold by the end of the trial, the 

unit with the highest activity was selected as the response of the overall system. This latter case 

was considered an informed guess when a forced choice was required. 

9.2 Learning  

MB- and MF-RL have been used to understand learning in biological systems in both 

cognitive and neural systems (Banino et al., 2018; Mattar & Daw, 2018). The Rescorla-Wagner 

(1972) model can be used to describe these types of learning. With a choice being made, the 

difference between the expected value of the chosen option, vi, and the experienced outcome, r is 

computed. If the outcome exceeds expectations, the association strength of appropriate synapses 

is increased. If the outcome is worse than expected, the strength is reduced. The Rescorla-Wagner 

equation (Averbeck & Costa, 2017; Rescorla & Wagner, 1972) summarizes the process of value 

adjustment during learning for behavior in its simplest form, which is given by: 

 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝛾(𝑟(𝑘) − 𝑣𝑖(𝑘))  (A11) 

 

where γ is the learning rate of the model that controls the size of each of the learning updates.   
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9.2.1 Association of task cues and systems (learning system) 

Conditioned learning for each system to a cued task was modeled with the Rescorla-

Wagner model as follows: 

 

𝑆(𝑛 + 1) = 𝑆(𝑛) + [𝑣𝑐(𝑛) × 𝐹𝑆(𝑛) × 𝛾𝑆 × ((𝑆𝑚𝑎𝑥) − 𝑆(𝑛))] (A12)  

 

where 𝑆 is the association of a perceptual task cue to a learning system (𝑆𝑀𝐵 for MB system and 

𝑆𝑀𝐹 for MF system), 𝛾𝑆 is the learning rate for the Rescorla-Wagner model for the association, 𝐹𝑆 

is the accuracy feedback of the corresponding learning system when compared to the actual 

category of the stimulus, and 𝑆𝑚𝑎𝑥 is the upper bound for 𝑆. In the presence of a perceptual cue, 

the corresponding 𝑆 is learned with the accuracy feedback of a particular learning system (MB or 

MF). 𝐹𝑆 took either the value of 0 or 1, with 0 representing mismatch of the learning system’s 

response with the actual stimulus category and 1 as the accurate response of the learning system. 

When the particular learning system gave a correct response in the presence of a perceptual cue, 

the corresponding 𝑆 increased with 𝛾𝑆 and the difference between 𝑆𝑚𝑎𝑥  and the previous 𝑆 value. 

As 𝑆 approached its maximum value, the increment per trial decreased.  

9.2.2 Confidence in the MB system 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 was adjusted according to the success of the MB system response in each trial 

with Rescorla-Wagner learning: 

 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛 + 1) = 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛) + [𝛾𝑀𝐵 × (𝐹𝑀𝐵(𝑛) − 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛))] (A13)  
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where, 𝛾𝑀𝐵 is the learning rate for the Rescorla-Wagner model for the MB system confidence and 

𝐹𝑀𝐵 is the accuracy feedback for the MB system. When the MB system gave a correct response, 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 increased with 𝛾𝑀𝐵 and the difference between 1 and the previous 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. As 

𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  approached 1, the increment per trial decreased. When the MB system gave an 

incorrect response, 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  decreased with 𝛾𝑀𝐵  and the difference between 0 and the 

previous 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. As 𝑀𝐵𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 approached 0, the decrement per trial decreased. 

9.2.3 Confidence in the MF system 

The weight of the MF system’s response varied with confidence in the MF system. 

Confidence was adjusted according to the response accuracy of the MF system, given by the 

Rescorla-Wagner learning model as follows: 

 

𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛 + 1)

= 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛)

+ [𝐾 × 𝛾𝑀𝐹 × (𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑥
− 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑛))] 

 

(A14) 

 

and 𝐾 =  {
0
1

  𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑒 𝑜𝑓  𝑀𝐹 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑟 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑟𝑒𝑝𝑜𝑛𝑠𝑒 𝑓𝑟𝑜𝑚 𝑀𝐹
𝑖𝑓 𝑟𝑒𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑀𝐹 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑟𝑜𝑚 𝑀𝐹                   

 

             

where, 𝛾𝑀𝐹  is the learning rate of the Rescorla-Wagner model for 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒. When the MF 

system gives a correct response, 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 increases with 𝛾𝑀𝐹 and the difference between the 

maximum value of 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑥
 ( 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑥

> 1 ) and the previous 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 . As 

𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 approaches 𝑀𝐹𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑥
, the increment per trial decreases.  


