
Highlights
3D shape estimation in a constraint optimization neural network
Pallavi Mishra,Sébastien Hélie
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ABSTRACT
One of the most important aspects of visual perception is the inference of 3D shape from a 2D retinal
image of the outside world. The existence of several valid mapping functions from object to data
makes this inverse problem ill-posed and therefore computationally difficult. In human vision, the
retinal image is a 2D projection of the 3D world. The visual system imposes certain constraints on the
family of solutions in order to uniquely and efficiently solve this inverse problem. This work specif-
ically focused on the minimization of standard deviations of 3D angles (MSDA) for 3D perception.
Our goal was to use a Deep Convolutional Neural Network based on biological principles derived
from visual area V4 to achieve 3D reconstruction using constrained minimization of MSDA. We con-
ducted an experiment with novel shapes with human subjects to collect data and test the model. The
performance of the network largely agreed with how humans estimated novel 3D shapes. The results
show that the constraint of MSDA in 3D shape can be implemented in a neural network and produce
human-like results. Additional visual constraints can be added to the network in the future to fully
test the theory of visual constraints as a basis of 3D shape perception.

1. Introduction
The basis of perceptual reconstruction of 3D objects in

the human visual system is a long studied problem. The
problem of 3D perception from a projected image in 2D by
the early visual system has been formulated as an "inverse
problem" (Poggio and Koch, 1985; Tikhonov and Arsenin,
1977; Pizlo, 2001). The existence of several valid mapping
functions from object to data makes this inverse problem ill-
posed and therefore computationally difficult. In human vi-
sion, the retinal image is a 2D projection of the outside 3D
world. It has been postulated in Pizlo (2001) that the visual
system imposes certain constraints on the family of allow-
able solutions in order to efficiently solve this inverse prob-
lem.

The main motivation behind this work is to design and
test a biologically-inspired network-basedmechanism to study
3D perception of object shape from their 2D projections.
In order to understand how human vision perceives the 3D
structure of objects from the 2D retinal images, the use of
certain constraints is essential. This is because the inverse
formulation of 3D percept is insufficient to solve for a unique
shape perception. The visual constraints of standard devia-
tion of 3D angles, symmetry, planarity, and compactness of
volume in models of 3D shape recovery are derived math-
ematically from the principles of the traditional Gestalt ap-
proach based on the ’Law of Prägnanz’ or simplicity princi-
ple (e.g., the principles of closure, good continuation, regu-
larity, symmetry, simplicity and so forth). These constraints
are chosen specifically because of their demonstrated effec-
tiveness in generating reliable 3D percepts in models of 3D
vision (Li, Pizlo and Steinman, 2009).

In this work, the constraint of minimization of standard
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deviation of 3D angles (MSDA) was used to solve the in-
verse problem of 3D shape reconstruction in a deep neural
network model. The computation of pairs of angles in es-
timated 3D shape is a good starting point after which other
constraints such as symmetry and compactness of 3D shape
can be added into the same network.

In this work, areas of the visual cortex were taken into
account in order to build a computational model that is based
on biological principles of information processing. Specif-
ically, the computational anatomy of the striate cortex and
some functional properties of the visual area V4 were used
to build the model. The goal was to demonstrate how a
computational approach based on biological principles may
perform constraint optimization in a network. The reason
for restricting the model to computation in a network was
simply because the brain itself is a network. The choice
of a Deep Neural Network substrate (DNN) for the com-
putational model is based on the recent discovery of inter-
esting properties of DNNs, showing that these models em-
bed general purpose visual computations while displaying
extraordinary task-trained accuracy in visual tasks. For ex-
ample, Dekel (2017) has shown that trained DNNs exhibit
general purpose computations that are computationally sim-
ilar to biological visual systems. They found that percep-
tual sensitivity to image changes has mid-computational cor-
relates in DNN, while sensitivity to segmentation, crowd-
ing, and shape, have DNN end-computation correlates. It
has also been shown (Cadieu, Hong, Yamins, Pinto, Ardila,
Solomon,Majaj andDiCarlo, 2014; Khaligh-Razavi andKriegesko-
rte, 2014; Yamins, Hong, Cadieu, Solomon, Seibert and Di-
Carlo, 2014) that when the same images are processed by
trained DNN, humans, and monkeys, the final DNN compu-
tation stages are strong predictors of human fMRI and mon-
key electrophysiology data collected from visual areas V4
and IT. This is not to say that DNNs are the only computa-
tional tools for studying properties of human vision as dif-
ferent learning algorithms and different physical implemen-
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tations may converge to the same computation when suffi-
ciently general problems are solved near-optimally (Dekel,
2017). However, DNNs present a wide array of functional
architecture and algorithmic choices that serve as a flexible
mechanism to simulate certain visual computations due to
their generalization capabilities.

Visual area V4 is a mid-tier visual cortical area in the
ventral visual pathway that has been studied for its role in
shape perception among other sensory functions such as prop-
erties of surface of objects, motion, visual attention, and
depth (Roe, Chelazzi, Connor, Conway, Fujita, Gallant, Lu
and Vanduffel, 2012). Studies (Mountcastle, Motter, Stein-
metz and Sestokas, 1987; Desimone and Schein, 1987) have
shown prominent orientation selectivity in this area suggest-
ing its role in shape perception. In order to encode complex
3D shape representations, this area specializes in encoding
the relative coordinates of object features such as edges and
curvatures (Pasupathy and Connor, 2001). The V4 cells are
found to be extremely sensitive to the relative position of
contour fragments within objects rather than absolute co-
ordinates of features. This area is critical to the structural
shape coding scheme and also carries sufficient information
for reconstruction of moderately complex shape boundaries.
The proposed computational model used the stimulus ob-
ject’s relative coordinates to compute the edges in the stimu-
lus. The edges were then used to extract properties about the
overall shape of the object using matrix-based operations.

In order to inform the architecture of the model with re-
gard to encoding and processing of 2D spatial coordinates
and 3D z-coordinates computed from 2D spatial coordinates,
the functional and computational architecture of the striate
cortex was taken into account. It is known from several stud-
ies (Grill-Spector andMalach, 2004; Fischer, Spotswood and
Whitney, 2011; Finlayson, Zhang and Golomb, 2017) that
2D spatial location information is encoded in several visual
areas but it’s magnitude or sensitivity decreases along the
visual hierarchy. However, 3D perceived position in depth
can be tracked inversely to 2D spatial position in the sense
that magnitude of depth decoding gradually increases from
intermediate to higher visual hierarchy. As one goes up the
visual hierarchy, visual areas become increasingly tolerant to
changes in the 2D location coordinates and become increas-
ingly more sensitive to depth information. Finlayson et al.
(2017) have explored the nature of spatial position-in-depth
representations and the interactions of the three spatial di-
mensions. They presented various stimuli spatially in hori-
zontal (X), vertical (Y) and depth (Z) coordinates to explore
how 2D and depth information may be organized and how
they interact throughout the visual cortex. As per their find-
ings, there was a gradual increase in Z information encoding
in later visual areas and Z dimension information was found
to highly overlap with XY information in later areas. Such
findings confirm that depth information is gradually com-
puted and stored with 2D information as one goes up the
visual hierarchy. It makes sense for the model to take the
2D coordinates as inputs and compute depth information in
stages across successive layers in the network.

Another important consideration for the network model
is the type of computational layers that can best approximate
the computation of the depth dimension from lower dimen-
sional inputs (including 2D coordinates) in the visual hier-
archy. It was postulated in Schwartz (1980) that one way to
encode high-dimensional features such as depth using low-
dimensional components such as the 2D spatial coordinates
of a scene can be demonstrated by the functional architec-
ture of the striate cortex. The columnar structures in stri-
ate cortex can allow for encoding of more complex dimen-
sions such as depth and color using spatial difference-based
mappings computed over lower dimensional columnar struc-
tures (an algorithm for a possible mapping was also pre-
sented in Schwartz (1980)). These types of mapping algo-
rithms present a way in which the computational architecture
of striate cortex may allow for multiple different dimensions
to be multiplexed using something like a spatial frequency
channel for each dimension. Several computational models
have since been proposed for encoding schemes and differ-
ential mapping algorithms to accomplish such tasks (an ex-
tensive review is presented in Fischer (2014)).

Computationally, convolutional layers in DNN provide
enough flexibility to create a mapping from lower layer to
layers up in the hierarchy and apply filters to carry out com-
putations necessary to extract the visual constraint ofMSDA.
These layers allow the model to successively compute a dif-
ferential mapping of the previous layers to extract higher or-
der properties of the stimuli for the next layer. To incorporate
the biological principles discussed above, the proposed com-
putational model used the relative coordinates of vertices in
the stimulus object to compute every viable edge in the ob-
ject. These edges are relative to the object coordinates. The
edges are then used to extract properties about the overall
shape of the object using matrix-based operations.

The model takes as input the 2D coordinates which are
mapped to the X and Y axes in the proposed simulation sys-
tem. The Z dimension information is estimated and refined
as a result of convolution operations in each successive hid-
den layer. The lower layers in the network first randomly
guess a Z coordinate and this value is further optimized as
the network tries to minimize the standard deviation of all
3D angles in the output layer. Therefore, the layers closer
to the output layer have a more accurate estimate of the Z
dimension than the first layer in the network. The network
stores each of the dimensions in parallel and identical com-
putational structures called ‘channels’. These channels are
traditionally used for RBG encoding in image processing ap-
plications for DNNs. So the x, y, and z dimensions reside in
separate channels. Each successive layer computes differ-
ences between two given dimensions at a time to compute
edges and then 3D angles.

To assess the model’s performance, an experiment based
on ideas from classic psychophysics is used tomeasure shape
constancy. The experiment measured the consistency in the
perception of novel stimuli achieved by human subjects on
a set of given shapes. A good test of the model was to be
an accurate predictor of the outcome of the psychophysics
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experiment based on a metric we defined for measuring the
shape consistency of 3D reconstructions of the shapes by the
model. The model’s prediction was compared against the
results from this experiment.

2. Methods
Code and supplementarymaterial are available online at:

https://github.com/palmishr/3dvisnet.
2.1. Model

A DNN (Deep Neural Network)-based model using the
Pytorch programming framework was developed based on
the ideas discussed above. The model attempted to use the
MSDA constraint to estimate the missing depth parameter.
The model did not explicitly attempt a full 3D reconstruc-
tion of the image but instead estimated the angles for the
most plausible 3D structure. The input for the model was a
2D canvas wherein coordinates of visible vertices were pre-
sented to the model. The model then computed the 3D an-
gles from these vertices by learning to estimate the depth pa-
rameter that minimized the standard deviation of all angles.
The model can process a batch of such objects simultane-
ously with variable number objects in the batch. There is no
programmatic limit to the number of objects in a batch. All
the input stimuli to themodel were created programmatically
in the fixed coordinate system, so the 2D coordinate system
was consistent across all stimuli. For each stimulus, the fol-
lowing information was extracted: a) (x,y) coordinates of the
vertices and b) a list of edges between each pair of vertices.

The coordinate system used to generate stimuli for ex-
perimentation and present inputs to the DNNmodel were the
same and consistent. The coordinate system used to display
images on the screen during the experiment was different
as it was determined using a different programming frame-
work. However, since images exported out of the stimulus
generation environment were already processed with regards
to rotation, one can assume that the coordinate systems were
consistent throughout for all practical purposes.

The model can be configured to process a fixed maxi-
mum number of vertices at any given time. This is a limi-
tation imposed by memory constraints in the simulation en-
vironment. When the model is presented a stimulus input
with fewer than the maximum number of possible vertices,
padding is used to fill up the unused matrix cells. This oper-
ation allows the model to process a variable number of ver-
tices per input object, even within a single batch of input.

The process of padding unused cells in the computation
is straightforward for the convolution operation. However,
the edge connections vector in the input needs to be re-structured
to comply with the higher dimension of vertices. The model
only processes information visible in the 2D projected view
of the input stimulus. This implies that the input parame-
ters include only the vertices visible in that projected view
of the object. The stimulus generation process takes care
of this requirement while generating input files for a given
stimulus. The connection matrix only includes vertices vis-
ible in the current view of the object. The model estimates

Figure 1: Complete network model to additionally compute
missing z parameters using fully connected layers. The reverse
mapping layers are highlighted using a darker box frame within
the Figure.

the depth parameter for the object by making an assumption
about the missing or hidden vertices. For all vertices that
are not complete, that is, all three edges are not visible, it is
assumed that the number of hidden vertices is equal to the
number of incomplete vertices. This assumption is based on
the work of Cao, Liu and Tang (2008), where psychophysi-
cal constraints were used to extract hidden structure from a
partially visible object. The network computes the standard
deviation value of all 3D angles for each training object and
minimizes this value to learn the best z parameters for given
objects. The shape information has to be extracted from the
network separately since the model does not directly output
the missing z-parameters for all vertices of the given object.
The model only outputs SDA measures related to the cost
function of how closely the constraints are met by the cur-
rent z-coordinate estimation.

In order to retrieve z-parameter values from the model,
a reverse learning technique is implemented where a set of
fully connected layers learn to extract estimated z* informa-
tion from the layers computing the final estimate of SDA.
As shown in Figure 1, a series of hidden layers are added to
learn the backward mapping from edges to vertices. The lay-
ers encoding the edges have the optimal SDA for the given
stimuli. The reverse mapping layers are trained using the
actual X and Y values of the 2D vertices from edges val-
ues obtained after convolution operation. The architecture
of full model using this technique is shown in the same fig-
ure (Figure 1).

Extracting the value of the z-parameter from the net-
work amounts to learning a reverse-mapping operation from
edges that minimize the SDA constraint back to their cor-
responding z-coordinate configuration. This means that as
the network is trained to minimize the SDA constraint, it
needs to simultaneously learn the reverse mapping for each
of the training examples. Since our training is based on the
stochastic gradient descent method, the model has two paral-
lel and nested learning paths for each set of training examples
in each epoch as shown in Figure 2.

After training, the process of reconstructing a novel 3D
shape for the network involves searching in the parameter
space that the model learned during training. It should be
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Figure 2: The model included two separate learning mech-
anisms. Here, MSDA represents the part of the network that
computed the Gram matrix and minimized the standard devi-
ation of the matrix.

Figure 3: A sample stimulus with 5 vertices.

noted that the reconstruction output (i.e., the value of the
missing z-dimension) may change based on how long the
model has been trained. Depending on the size of the net-
work (e.g., based on the number of hidden layers), the time
it takes to retrieve the z-parameter can vary. For example,
a network that can process up to 20 vertices with 4 hidden
layers takes a fraction of a second to output the z-parameter
while running on a GPU with 1920 cores and 8 GBmemory.
However, for a larger network with more hidden layers, this
time may increase by several orders of magnitude to seconds
depending on the computational resources for the network
on a particular machine.
2.2. Model demonstration using an example

stimulus
The model receives an input containing the 2D coordi-

nates of the visible vertices along with the connection ma-
trix. The connection matrix represents the pairs of edges
visibly connected in the 2D object view. It has to estimate
an initial depth z∗i , i ∈ 0…(Nv − 1) for each of the Nvvertices. It is to be noted that the edge vectors can be ob-
tained using x, y, z coordinates of the vertices V0…VNv−1by taking the difference in coordinates as shown in Equation
1.

Figure 4: The sample stimulus (Figure 3) encoded into model
inputs. The connection matrix is a list of vectors encoding
visible vertices and visible edges.

Ei,j = Vj − Vi (1)
Since the edge computations in each of the three dimen-

sions are identical operations, the model can work on the
three dimensions in parallel as shown in Equation 2. Here,
z∗ represents the estimated z coordinates for vertices Vi and
Vj .

Exi,j = xj −xi, Eyi,j = yj −yi, Ez∗i,j = z∗j −z
∗
i (2)

Figure 3 shows a simple stimulus for illustration. The
vertices in the sample stimulus and their coordinates in three
dimensions are shown in Figure 4. Only the X and Y dimen-
sion is input into the model. The edge vector shown in Fig-
ure 4 encodes the information about visible connections in
the stimulus. The edges that visibly exist correspond to the
value 1 and the ones that do not visibly exist have the value
0. Figure 4 also shows the connection between the vertices
that each edge represents. This relationship was established
in input formatting Algorithm 1. Figure 5 illustrates how
the computation is distributed in three separate and identical
channels as the input is processed in the model.

The edges are computed using a series of convolutional
layers with differing dilation values as illustrated in Figure
6. As depicted in the illustration, the first convolution oper-
ation computes the edge between vertices that are adjacent,
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Figure 5: Identically divided computations across three sepa-
rate channels of the network using the sample stimulus shown
in Figure 3

the second convolution computes edges that have 1 vertex
between them, and the last convolution computes edges for
vertices that are the furthest apart. All possible combina-
tions of vertices are covered by this process. This process
computes edges in the same order as they are computed in
Algorithm 1. After all edges are computed by the series of
convolution layers, the connection matrix denoting vertices
connected by an edge is used to drop out the edges that do
not exist in the object. Given our sample input stimulus in
Figure 3 and the corresponding edge vector table in Figure 4,
the edges that do not exist in the stimulus have been marked
with a * in the edge vector computed by the network in Fig-
ure 5. These edges will be dropped from all further compu-
tations. All the edges are then normalized to facilitate keep-
ing track of the computations and intermediate results gen-
erated. Further details regarding the specific values used to
configure the convolutional layers along with details of the
mathematical operations involved in a typical convolution
are presented in Appendix Section A.2.

In the next step, the model forms a Gram1 matrix for the
edge vectors. This is done by taking the outer product of the
entire set of computed edges with itself. Each cell in this
matrix corresponds to a combination of any two edges.

The angle between a pair of edges is defined as:

�i,j = cos−1
ETi Ej

||Ei||2||Ej||2
= cos−1(Gi,j∕(lilj)) = cos−1Gi,j

given ∶ li = lj = 1(normalized edge vectors)

1Given a set V of m vectors, the Gram matrix G is the matrix of all
possible inner products of V

Figure 6: Edge computation operations in the convolutional
layers for a particular channel (X in this case) (a) Dilation of
1 (b) Dilation of 2 (c) Dilation of 3 (d) Dilation of 4. The
same operation is repeated for the Y and Z dimensions on the
second and third channel respectively.

Figure 7: 3D voxel output of the vertices extracted from the
network for a simple symmetrical cuboid object.

whereGi,j is the grammatrix cell for normalized edgesEi, Ej .
Since cos−1 is a monotonic function, minimizing the angle
between the edges Ei, Ej corresponds to minimizing Gi,j .Minimizing SDA amounts to minimizing the variance of the
Gram matrix itself.

2.2.1. Sample Output and Training Data
Figure 7 shows the output of the estimated z parameters

by the model for an input with a symmetrical cuboid shape.
Themodel was trained on a set of random cuboid objects cre-
ated using a symmetrical cuboid shape (as shown in Figure
7). These training examples were generated by transforming
the original shape by adding random displacement to the ver-
tices of the original shape in all 3 axes. The original shape
was also randomly re-scaled in a different size and orienta-
tion to create training data for the model.
2.3. Experiment

A shape constancy experiment was designed to estimate
consistent shape perception from a group of human subjects
in order to: (a) Isolate and identify cases where human sub-
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jects can perceive the shapes of novel stimuli consistently.
(b) Isolate and identify cases where our model succeeds in
achieving a consistent 3D shape estimation as measured by
angular estimation using the same stimuli with different ro-
tations. (c) Compare the outcomes of (a) and (b) in order to
test the effectiveness of the model.
2.3.1. Stimulus

Stimulus generation was a critical step for designing the
experiment as well as for testing the model. The shape per-
ception experiment required subjects to consistently iden-
tify objects presented from more than one viewing angle.
For a reliable test of consistent 3D perception from differ-
ent viewing angles, it was necessary that subjects used no
previous knowledge about the shape but only the informa-
tion presented to them in the experiment. Therefore, a set of
novel and unfamiliar stimuli was constructed for the purpose
of testing reliable shape perception in the experiment.

It has been hypothesized in Chan, Stevenson, Li and Pi-
zlo (2006) that 3D perceptual representation is reliable in
cases of structured 3D objects but not in cases of unstruc-
tured objects. Pizlo and Stevenson (1999) showed that shape
constancy from novel views can only be achieved if struc-
tured novel objects obey some regularity constraints (such
as symmetry). Therefore all novel shapes were constructed
so that they had a pronounced regular structure for unique
shape perception. These stimulus objects displayed mirror
symmetry along one axis only. The entire set of these objects
is presented in the Supplement Section 1. The selection of
these specific shapes was based on the results from several it-
erations of pilot versions of the experiment. It was observed
that without any regularity in the stimuli, there was no con-
sistent shape recovery as measured by our pilot experiments.
Some examples objects from the pilot experiment that failed
to be recovered above chance level are shown in Supplement
Section 2. It was observed from the pilot experiments that
objects with fewer vertices were more difficult to recover.

Based on these findings, sufficiently complex but regular
and novel sets of shapes were created. The algorithm to gen-
erate these new shapes (as documented in Appendix Section
A.3) was able to create a limited number of unique shapes
that were clearly distinct from one another. Several other
shapes created using this algorithm were too similar to other
shapes in the set (except for only a slight difference). The set
of distinct shapes was then divided into blocks based on the
level of complexity of the shape for the final version of the
experiment. The motivation in dividing the shapes in blocks
was to group shapes of similar complexity (same number of
vertices) together to reduce the variance in measuring shape
constancy by aggregating individual shapes in blocks.

Each blockwas designed so that it contained objects with
similar complexity. The numbers associated with blocks had
no meaning. Two of these blocks contained three objects
and four blocks contained two objects. There are different
numbers of objects in blocks to rule out the possibility that
subjects could only discriminate between an object and itself
but did not perceive the object uniquely. This hypothesis

can be tested if there were any significant differences in the
performance of blocks with two objects versus blocks with
three objects.

Another block was created that contained objects with
dissimilar shapes from other blocks. This block was used
to test whether the subjects are only discriminating between
objects or were perceiving them individually. If they were
only discriminating between objects, then this block would
have a higher performance because of higher discriminabil-
ity between the objects compared to other blocks.

The set of stimuli used for training and testing the model
and the set of stimuli used to test human subjects were the
same. This requirement was imposed in order to make a di-
rect comparison between the performance of the model and
the experiment outcome. An open source 3D graphic ren-
dering tool called ’Blender’ was used to create 3D models
of the novel structured objects. Since this software allows
for Python-based programmatic creation, manipulation, and
extraction of data, the object parameters could be extracted
in the form of a text file along with images from a variety
of rotation viewpoints and projections. The stimulus param-
eters exported from the software were used as input to the
model and the corresponding images were used for the ex-
periment.

To create the stimuli, the 3D graphical modeling soft-
ware was set to perspective projection which is its default
setting. The camera operator in the software (used to gener-
ate object views) was positioned at the origin relative to the
object coordinates. The camera position was constant and
therefore it was equally distant for all the generated stimuli.
The average angular size of the objects created in the simu-
lator was 5.3 degrees. The distance of the camera from the
object was fixed at 11 units. The average length of an edge
in each object was 1 unit.
2.3.2. Experiment Details

Stimuli: All stimuli were symmetrical on the X axis with
a pronounced structure for shape perception so that subjects
can achieve shape constancy for these unfamiliar but struc-
tured objects. There were four rotations per stimulus on the
Y and Z axes each (for a total of eight rotated versions per
stimulus). Each object was shown a total of sixteen times
- eight times against its own rotated version and eight times
with another object’s rotated version. Depending on the shape
of the original object, a rotation on the Y or Z axis may
change the perception of the object shape to a certain ex-
tent. It should be noted that the rotation operation is relative
to the stimulus and not in regard to the absolute coordinate
system used to display stimuli on the monitor. Therefore any
rotation on the Y and Z axis has an effect on the experiment
parameters.

The image length was set to 11 cm and the image width
was set to 20 cm for the experiment. The average viewing
distance was 80 cm. The length and width of the image was
fixed. However, based on the rotation angle and differences
in lengths across the diagonal, the length andwidth of shapes
could vary. The range of this variation did not exceed 1.5 cm
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for the width and height of each object. The average angular
size for object width was 4.3 degrees and for height it was
4.9 degrees. The range of angular width and height size did
not exceed 1.07 in either dimension.

Number of subjects: Twenty-five subjects, all students at
Purdue University, were recruited for the experiment. All
subjects were students in the Department of Psychological
Sciences. The study protocol was approved by the Purdue
University Human Research Protection Program. Written
informed consent was obtained from each subject before be-
ginning the experiment. Twenty subjects participated in the
experiment for course credit while the remainder were vol-
unteers. The experiment lasted for about an hour.

Number of trials per subject: The total number of trials
for each subject in the experiment was 272. The trials were
distributed across seven experimental blocks. Each stimulus
object in an experiment block was presented to the subject
from eight different projection angles.

Design of Experiment Blocks: There were seven blocks
in the experiment. Each block was designed so that it con-
tained similarly shaped objects with similar complexity. The
numbers associatedwith blocks had no ordinalmeaning. Blocks
1, 2 and 7 contained three objects while the rest contained
two objects. All blocks except Block 7 contained similar
but distinct shapes. Block 7 contained objects from other
blocks (2, 3 and 4). Since Block 7 had objects with dissimi-
lar shapes, it was used to test whether subjects only discrim-
inated between objects instead of perceiving them individu-
ally. In the former case, the performance in this block should
be better than all the other blocks.

Task: Within each block, each object (A) was shown ei-
ther paired with itself (A) at a different rotation angle or with
another object (B) with a different rotation angle. The sub-
ject was to decide if the two objects were the same or dif-
ferent by answering a ’YES/NO’ question at the end of the
display. The ’YES’ response was mapped to the ’f’ key and
’NO’ response wasmapped to ’j’ key on the keyboard. There
was no feedback given to the subjects on their responses.
The sequence of display was:

1. Blank Screen (1 sec)
2. Object (A) (4 sec)
3. Blank Screen (1 sec)
4. Object (A) or Object (B) (4 sec)
5. Are the objects shown same? YES/NO
Based on the outcome of pilot studies and the design

of shape constancy experiment, it was predicted that blocks
with higher object complexity would outperform blockswith
lower complexity. Also, since the experiment tests subjects’
ability to perceive a shape consistently and individually, it
was also predicted that performance in blocks with dissimi-
lar objects would not differ from from performance in other
blocks. The other prediction was that performance in blocks
with two objects and blocks with three objects should not
differ.

The predicted block performance based on object com-
plexity are as follows: Block 4 has the least complex objects

so the lowest performance is expected for this block. Block
3 has more complexity than block 4 but lower than the rest of
the blocks. Performance in this block should thus be better
than Block 4 but not as good as other blocks. Blocks 1 and
2 have high complexity objects and similar shapes so their
performance is not expected to differ and should be higher
than blocks 3 and 4. Blocks 5 and 6 have the highest com-
plexity so their performance should be higher than blocks 1
and 2. Block 7 was exploratory. It should have the highest
performance if this task is being performed as a discrimina-
tion task rather than a consistency of perception task. Since
this block contains various objects complexity, we could not
predict how its performance would compare to the rest of the
blocks based on the principle of object complexity.

In general, if the model and the experiment outcomes
agree on the shapes that are more consistently perceived than
others, then the model achieved the objective of using the
constraint of MSDA to recover shapes. But since the model
outputs an estimate of z-coordinates of the 2D shapes for
each given rotation of the object shape and no information
about exact object reconstruction can be extracted from the
experiment, we proposed a metric to measure object per-
ception consistency from the model. If the model is indeed
applying MSDA to consistently perceive the stimulus, then
lower variance in model output would corresponds to higher
block accuracy in the human experiment. Because the mea-
suring scales for the human and model are different, agree-
ment of the performance order of the blocks from the exper-
iment and model was used to measure success.

In other words, the experiment is based on the classic
psychophysics experiment structure to measure shape con-
stancy achieved by human subjects on a set of given shapes.
A good test of the model is to be an accurate predictor of the
block ordering outcome of the experiment based on a met-
ric we defined for measuring the shape consistency of 3D
reconstructions of the shapes by the model.

3. Results
3.1. Experiment Results

For each subject, whether or not a given stimulus is cor-
rectly categorized was recorded. If the two stimuli shown
back to back were the same object and the participant re-
sponded ’yes’ then a correct response was recorded. If the
two stimuli were different objects and the subject responded
’no’, a correct response was also recorded. In all other cases,
an incorrect response was recorded.

The first step in data analysis was to identify the sub-
jects who were able to perform the task above chance level.
This chance level cutoff was computed based on the number
of successes in 272 independent trials with the probability
of success equal to 50% per trial with a confidence interval
of 95% (using a binomial distribution). The accuracy cutoff
was found to be 55%. The response accuracy for a given
object was obtained by counting all the correct responses
against the total number of times the object was shown to
the subject. The overall performance of a subject in the ex-
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Figure 8: Average error rates for each block in the human
experiment.

periment was their accuracy on all the objects combined.
In previous pilot studies, it was noted that engaged subjects
could perform considerably above chance (up to 80% accu-
racy overall). Out of a total twenty-five subjects, five were
removed from further analysis based on this cutoff.

A suitable method to compare the experiment outcome
against the model was to compare performances at the block
level. The model’s output across several iterations could be
aggregated at the block level. In this way, the individual
variations for object consistency from the experiment and
the variation of the model’s output across different simula-
tions were both aggregated at the same level. Since blocks
contained similar objects with similar complexity, blockwise
comparison was more appropriate than comparing individ-
ual stimuli one by one.

The overall error rate per block is shown in Figure 8. In
order to test for the effects of block and rotation angle in
the Y and Z axes on the binary response outcome (correct
or incorrect), a generalized linear model based on maximum
likelihood estimation was fit to the data. The generalized
linear mixed effects model used a logit link function for the
binomially distributed dependent variable.

Therewere three generalized linearmodels fit to the data.
The first model contained both the blocks and the rotation
angles as individual predictors. The other two models were
fitted to the data by dropping one of these two predictors
at a time. Table 1 summarizes the coefficients, their sig-
nificance level, and standard errors for the particular blocks
and rotation angles from the first model. A test of signifi-
cance of block and the rotation angle on response accuracy
was carried out by comparing the fit of the full model with
the fit of the other models without each predictor. The re-
sults of the significance test on blocks is presented in Table
2. It was observed that block had a significant effect on the
outcome (correct or incorrect) using the deviance statistic
(Cℎisq(6) = 79.49, p < 0.001). The effect of rotation on
either the Y or Z axis on the outcome was also significant
(Cℎisq(7) = 50.4, p < 0.001) as seen in Table 3. A simple
linear regression was done on the parameter estimates (beta)
for Y and Z versus the angle of rotation. The plots showing
the relationship between the betas for Y and Z and the an-
gle of rotation for each directions are shown in Figure 9. As

Table 1
Results from the Generalized Linear Models. Each indepen-
dent variable is displayed with its coefficient and standard error
along with significance.

Dependent variable:

Correct

Block1 1.095∗∗∗ (0.123)
Block2 1.238∗∗∗ (0.124)
Block3 0.988∗∗∗ (0.131)
Block4 0.479∗∗∗ (0.128)
Block5 0.721∗∗∗ (0.129)
Block6 1.325∗∗∗ (0.135)
Block7 0.980∗∗∗ (0.122)
rotY36 −0.163 (0.120)
rotY54 −0.232∗ (0.121)
rotY72 −0.392∗∗∗ (0.119)
rotZ18 0.178 (0.117)
rotZ36 −0.042 (0.115)
rotZ54 −0.150 (0.115)
rotZ72 −0.281∗∗ (0.113)

Observations 5,440
Log Likelihood −3,417.652
Akaike Inf. Crit. 6,865.304
Bayesian Inf. Crit. 6,964.327

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2
ANOVA table for the block significance test obtained by com-
paring two nested models, one with block as predictor and
another without block as predictor of response accuracy.

Df AIC BIC logLik
deviance Chisq Chi Df

bmod_no_blocks 9 6932.79 6992.20 -3457.39
6914.79

bmod 15 6865.30 6964.33 -3417.65
6835.30 79.48 6

Pr(>Chisq)
4.567e-15***

can be seen, an increase in the rotation on the Z axis reduced
subject accuracy, but no effect of rotation on the Y axis was
observed.

The discrimination sensitivity measure (d’) related to the
performance within each block is shown in Figure 10. Since
higher discriminability should lead to higher accuracy in the
task, the plot for discrimination sensitivity for blocks should
match the one for accuracy. This is indeed the case as the
order of blocks based on both these measures is the same.

Due to the nature of the task involving a forced choice
(yes/no response), it makes sense to test if the responses were
biased in one way or the other. That means, if subjects were
more likely to say ’yes’ when the stimuli presented were dif-
ferent objects rather than ’no’ when they were same objects.
The criterion location of 0 means that the responses are un-
biased. Criterion location was obtained using the formula:
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Table 3
ANOVA table for the rotation angle significance test by com-
paring two nested models, one with rotation (4 rotations on
Y axis and 4 rotations on Z axis) as predictor of response ac-
curacy and another without rotation as predictor of response
accuracy.

Df AIC BIC logLik
deviance Chisq Chi Df

bmod_no_rot 8 6901.70 6954.51 -3442.85
6885.70

bmod 15 6865.30 6964.33 -3417.65
6835.30 50.40 7

Pr(>Chisq)
1.208e-08***

Figure 9: The relationship between the Y and Z rotation
angles on GLMz model estimates for Y and Z respectively
(R2 = 0.95 for Y and R2 = 0.97 for Z).

C = −[z(H) + z(F )]∕2 (3)
where z(H) denotes the z score for fraction of hits and z(F )
denotes the z scores for fraction of misses. The aggregate
response criterion for each block is shown in Figure 11. A
sign test on the criterion locations for blocks (s = 2, p-value
= 0.4531) reveals that there is no evidence for a systematic
bias on criterion location (i.e., errors across blocks were ran-
dom). A test for the location of criteria for all valid test
subjects (s = 10, p-value = 1) revealed that there was no
evidence of criteria being different than zero, showing no
difference between the number of false alarm and misses in
subject responses.
3.2. Model Results

The model computed a Gram matrix using an estimate
of the z values that minimized the standard deviation of all
3D angles in the reconstructed shape. The experiment on
the other hand measured the consistency of shape perception

Figure 10: Average discriminability for all objects within each
block.

Figure 11: Experiment result: Plot showing the response bias
measured in terms of criterion location for each block.

under various rotations of a given object. Since the actual re-
constructed shape by human participants is never available to
compare with the model estimate, a new metric was devised
to quantify the performance of the model. The consistency
of shape recovery by themodel wasmeasured by quantifying
the similarity in the 3D angles estimated from different ro-
tated views of a given object. The 3D angles are contained in
the Grammatrix generated for all rotations of a given object.
The standard deviation of euclidean distances between these
Gram matrices is used as a proxy for measuring consistency
of 3D shape recovery.

A network to process up to twenty vertices at a time was
trained on a set of randomized cuboid-based shapes using re-
spective SDA values. The output of the network is the SDA
value for each stimulus. Since the network learned to mini-
mize the SDA value, the error rate of the network was mea-
sured in terms of the mean SDA value per batch of input.
The network was then tested on a set of unseen stimuli. The
average SDA as measured by the stimulus rendering soft-
ware was around 0.03 for the training and test stimulus sets
(respectively). In the training phase, the model started with
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Figure 12: Top: Error plot during the first epoch of training
samples; Bottom: Error rate showing model minimizing SDA
values during 10 epochs of 1000 training samples each.

a high error rate of 0.2 and gradually decreased its error to
0.01 over 10 epochs of training with 1000 stimuli with the
batch size of 5. Figure 12 shows the network error rate over
a training sequence of the first 1000 objects.

The average SDA value in Radians after several epochs
of training was 0.025, which translated to degrees is 1.43
Degrees. This value is very small because the network has
been trained extensively until the point that a stable value
for SDA persists. However, the value of SDA for a novel
stimulus input to the model can be higher than this value.
Depending on the complexity of the input, the SDA value
computed by the network for an unseen 3D shape can range
between 0.25 (i.e, 14.3 degrees) to 0.025 (1.4 degrees).

The network was finally tested with all the objects in
the experiment blocks. In order to test for shape constancy
using the model, each of the eight rotations of the exper-
iment objects was presented to the model for comparison.
The model estimated the missing depth (z coordinates) for
each of these eight views of the object by minimizing the
SDA value in the estimated 3D object. For each of these
eight views, the Gram matrix of 3D angles is obtained from
the model. To test the consistency of estimated 3D shapes
across different rotation angles, the l2 norm of the Euclidean
distance between the Grammatrices for the rotated and orig-
inal views was computed. Since there is no access to the per-
ceived 3D shapes from the experiment, this metric helps in
comparing the model performance and the experiment out-

Figure 13: Model performance for 100 unseen randomly gen-
erated cuboid-based stimuli.

Figure 14: Performance of the model in the experiment
blocks. The best performing blocks were Blocks 6, 1, and
2. The worst performing blocks were Blocks 4 and 5. The er-
ror bars denote the standard deviation of the computed metric
across 20 different simulations of the trained model.

come. It is to be noted that object constancy is achieved
only when it is perceived consistently across different rota-
tional viewpoints. The experiment results therefore demon-
strate the performance consistency at the block level for all
tested stimuli. The standard deviation of this metric from the
model shows the extent to which estimated 3D shapes devi-
ate from the original estimate. Lower values of the standard
deviation means that the shape recovery is more consistent
across different viewing angles by the model.

The performance of the model qualitatively matched the
results from the experiment as shown in Figure 14. The cri-
terion of success was proposed to be how closely the order
of reconstruction consistency from 2D input by the model
matched the ordering of block difficulty in human subjects.
The analyses of experiment outcome and the output from
the model show similar results. As in the experiment, the
blocks that contained high complexity objects outperformed
those with lower complexity objects. Blocks with lower dif-
ficulty - Block 1, Block 2 and Block 6 - showed better perfor-
mance than blocks with higher difficulty - Block 4 and Block
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5. Block 3, which was of moderate difficulty in the Experi-
ment, performed better than difficult blocks but worse than
easier blocks in the model.

There are however some differences in the performance
of the model on some blocks compared to the experiment
outcome. For instance, although Blocks 4 and Block 5 are
the worst performing blocks in both the experiment and the
model, their order of performance was not the same. These
differences can be expected because the human visual sys-
tem uses several constraints at once to perceive a unique 3D
structure. In that aspect, the model is highly limited because
it used only one constraint. However, the results are encour-
aging and the constraint that the model used showed consid-
erable effectiveness in modeling human performance.

4. Conclusion and Future Work
The task performed by this DNNmodel is different com-

pared to most of the DNNs in the current literature that per-
form classification and regression tasks. Even within the
domain of neural networks used for 3D reconstruction prob-
lems, this network is different in the sense that it does not get
the ground truth of the 3D shape during the training. This
model learns tominimize SDAvalue of 3D output. By learn-
ing to solve the optimization problem of minimizing SDA,
the network is able to find the most suitable z-parameters for
a particular stimulus.

Similar to other neural networks driven by backpropaga-
tion, this network minimizes a loss function that is computed
at the final layer of the network. It is well-known that back-
propagation uses gradient descent to minimize the value of
this loss function. It can be said that by virtue of backpropa-
gation all neural networks are solving an optimization prob-
lem. However, for a network claiming to solve an optimiza-
tion problem, the problem needs to be formulated explic-
itly. In specific cases, optimization problems can be defined
explicitly and neural networks can be designed to solve the
problem directly or as a surrogate solver in conjunction with
other mathematical solvers.

In this particular case, the problem of finding the best z
parameter has not been formulated strictly as an optimiza-
tion problem. If this problem was formulated as an opti-
mization problem, a mathematical solver would be required
to assist the network at some level. Incorporating a math-
ematical solver would have defeated the goal of finding a
network architecture based on biological principles to solve
this problem. In this case, the architecture and the geomet-
rical computations inside the layers encode the constraints
of MSDA into the network. By computing a Gram matrix
of pairs of 3D angles and minimizing the standard devia-
tion of this matrix using backpropagation, this network geo-
metrically encodes the problem rather than mathematically.
Therefore it can be said that this network implicitly solves an
optimization problem by finding the best z parameters while
minimizing a loss function that represents the MSDA con-
straint.

This network can generalize well to different sets of in-

puts given sufficient training. For instance, the set of novel
objects used to test the model was never seen by the model.
The training set consisted of cuboid shapes of different sizes.
Each shape in the training set was created by taking a sym-
metrical cuboid and adding a random amount of displace-
ment on each vertex along each of the x, y and z axes.

A limitation of this model is that it only works with 2D
inputs in a coordinate systemwhich is relative to the model’s
input canvas. In that sense it cannot generalize to any given
2D line drawing unless correctly formatted and presented to
this model. Also, the input requires an encoding of which
edges in the stimulus are visible. This is different from the
DNNs in current literature for image processing, which often
take raw images as input.

In conclusion, the goal of the model was to demonstrate
a computational approach to optimize psychophysical con-
straints within a network. Themodel used only the constraint
of minimization of standard deviation of all angles to esti-
mate 3D structure. All computations required to compute
and minimize this constraint were embedded within the net-
work itself.

An experiment to test human subjects for 3D perception
of novel and unfamiliar objects is described and the results
are presented. The goal was to use the results from this ex-
periment to test the validity of the proposedmodel. Based on
the output of the model from the objects used in the experi-
ment, it was shown that the model may reproduce the shape
constancy achieved by human subjects on a similar set of
novel stimuli. The degree of accuracy to which the model
can do this can vary significantly since the human visual
system uses several other constraints for 3D perception of
object shape. Since the model and subjects from the exper-
iment failed on the same type of stimuli (at the block level),
the analysis of these failures suggests that the MSDA con-
straint is an effective first step for reliable shape perception.
The similarity of outcome of the model with the experiment
results shows that a network-based model can implement the
visual constraint of MSDA. The results also provide a proof
of concept for this biologically-inspired network to compute
the required constraint.

A future extension of this work can be to implementmore
constraints into the model to generate 3D shapes for rotated
views of a 2D stimulus. These 3D shapes can then be used
to test whether human observers agree with the reconstruc-
tion by designing a similar experiment. The observers can
be shown different valid reconstructions for the 2D stimuli
to gauge if their preference agrees with the model or not.
Computationally, embeddingmore than one constraint in the
same network can show new insights of how networks can
achieve 3D shape recovery using psychophysical principles.

In conclusion, embedding the constraint of MSDA in a
network is shown to be effective in predicting human perfor-
mance on a set of novel shapes. The model provides a proof
of concept for how a biologically-inspired networkmay achieve
such a task. It will be an interesting future research path to
explorewhether embedding other psychophysical constraints
in the network can shed more light on how the human vi-
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sual system uses built-in constraints to understand our three-
dimensional environment.

A. Appendix
A.1. Algorithms

Algorithm 1 Create Edge Connection Vector a for given
stimulus
Require: V0…VNv−1 ⊳ All visible vertices in the current

view.
Require: 3D Mesh object containing all vertices and con-

nections.
Ensure: ConnV ec (An array of all possible connections be-

tween every vertex pair in the stimulus. An existing
connection carries the value of 1 at the appropriate po-
sition in the array while non-existing connections have
the value 0.)

1: function SEARCHEDGES(V0…VNv−1)2: ConnV ec ← [ ]
3: for step← 1 to (Nv − 1) do
4: i← 0
5: for j ← (i + step) toNv do
6: if Vi is connected to Vj then
7: ConnV ec ← [ConnV ec, 1]
8: else
9: ConnV ec ← [ConnV ec, 0]
10: end if
11: i← i + 1
12: end for
13: end for
14: return ConnV ec
15: end function

A.2. Convolutional Layer Configuration
This section explains the operational details of convolu-

tional layers including the values of key parameters used in
the model.
A.2.1. Configured Parameters:

Channels: 3
Different channels allow for parallel operations on the set
of inputs. There are 3 separate channels for 3 different co-
ordinates: [x,y,z]. The operations across channels are fully
independent but identical.

Filter size: 2
Filter or kernel size describes the size of the smallest matrix
operation in the convolution layers. The filter or kernel is
convolved with the input to produce the output. Since the
model operates on a pair of vertices at a time to compute the
edge vector, the filter size is set to 2.

Stride: 1
The rate at which the kernel passes over the input. A stride
of 1 moves the kernel in increments of 1 unit.

Dilation: 1,2,,..Number of Edges
Distance between two consecutive units in a layer to be con-
sidered in the convolution operation. In order to compute all

Figure 15: The relationship between the input layer parame-
ters and output layer parameters in the convolutional layers

possible lists of edges, successive convolution layers com-
pute a distance d dilation apart where d is the dilation value.
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Each convolution layer is initialized with these weight matri-
ces. Each 3x2 matrix represents an input channel. The filter
of [1,-1] is used to compute the differences between the x, y
and z coordinates in successive channels.
A.2.2. Mathematical Details

Figure 15 (b) shows the computations involved for each
batch for the convolution. HereW is the weight matrix as-
sociated with the layer. Figure 15 (c) visually depicts how
the weight matrix is related to the input and output channels
based on the equation shown in part (b). The parameters for
batch size, layer size, channels, kernel size, and weight ma-
trix that were utilized in the convolution operation were in-
dividually described in Section 3 along with the values used
in the model.

Lout =
Lin + 2 ∗ padding − dilation ∗ (kernelsize - 1 ) − 1

stride +1

(4)
Figure 15 (a) shows the high level relationship between

the input and output layer sizes (L) of a convolution opera-
tion given the number of channels (C) and number of batches
processed (N). The way Lout is related to Lin is shown in
Equation 4.
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Figure 16: Stimuli example: Same object shown from 3 differ-
ent projection viewpoints

A.3. Novel Stimuli Generation
An open source 3D graphic rendering tool called ’Blender’

was used to create 3D models of the novel structured stimu-
lus objects. The software allows for Python based program-
matic creation, manipulation, and extraction of data. Object
parameters can be extracted in the form of a text file along
with images from a variety of rotation viewpoints and pro-
jections as shown in Figure 16. The stimulus parameters ex-
ported from the software can be used as input into the model
and the corresponding images can be used for the experi-
ment.

Each novel stimulus object was created programatically
by applying a set of transformations on an original cuboid
object. The set of transformations applied in order were:

1. Randomization: This transformation operation randomly
displaced the location of selected vertices. The amount
of displacement along an axis can be specified. A ran-
dom offset is added to the given displacement value to
obtain a randomized transformation. A seed value is
used to control this random transformation by control-
ling the offset. A different seed will produce a new
result whereas the same seed will result in the same
output every time.

2. Mirroring: Mirrors the geometry of an object along
an axis. The resulting geometry is joined together us-
ing a merge distance parameter. Pairs of original and
newly mirrored vertices can be welded together using
the merge distance parameter, which defines the min-
imum distance for the welding operation to happen.

3. Symmetrizing: Makes the mesh object symmetrical.
Unlike mirroring, it only copies in one direction, as
specified by the “direction” parameter. The edges and
faces that cross the plane of symmetry are split as needed
to enforce symmetry. Just like mirroring, this opera-
tion takes a minimum distance parameter to enforce
symmetry from the central pivot point.

Novel, partly symmetric and structured objects were cre-
ated from a cuboid by choosing the amount of randomiza-
tion, pivot points, and merging distances for mirroring and
symmetry operations. Fewer randomization operations lead
to simpler shapes. The final number of vertices in a trans-
formed object depends on the mirroring and symmetrizing
operations. These operations are controlled by the merge
distance parameter. A table containing the objects used in

Figure 17: Table showing the parameter values used to gen-
erate objects for the Experiment Blocks.

Figure 18: Example stimulus: Object 1 in Block 4 is shown
from 8 different orientations.

the experiment blocks and configuration parameters for each
of them is presented in Figure 17.

The stimulus objects obtained from these operations are
then rotated a fixed number of times in the Y and Z axes. All
these views are then rendered in 3D for the different rotation
angles. The output consists of a set of images for each ob-
ject and a text file containing object properties including the
3D coordinates of its vertices and a connection matrix that
encodes the pairs of vertices that are connected via an edge
in the object.

An example of novel object created using Blender and
captured in different orientations is depicted in Figure 18.
The code used to generate the stimuli is available at
https://palmishr.github.io/3DStimuliBlender/.
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