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Abstract 

Smith et al. (2005) have proposed a new categorization paradigm called the visual-search 

categorization task to study how display size affects categorization performance. Their 

results show that, in a wide range of conditions, category knowledge collapses as soon as 

multiple stimuli are simultaneously displayed in a scene. This result is surprising and 

important considering that humans parse and categorize objects from complex scenes on a 

daily basis. However, Smith et al. only studied one kind of category structure. This article 

presents the results of three experiments exploring the effect of display size on perceptual 

categorization as a function of category structure. We show that rule-based and 

information-integration categories are differently affected by display size in the visual 

search categorization task. For rule-based structures, target-present and target-absent trials 

are not much affected by display size. However, the effect of display size is bigger for 

information-integration category structures, and much more pronounced for target-absent 

trials than for target-present trials. A follow-up experiment shows that target redundancy 

(i.e., having more than one target in the display) does not improve performance with 

information-integration category structures. These results suggest that categories may be 

learned differently depending on their underlying structure, and that the resulting category 

representation may influence performance in the visual search categorization task. 

Keywords: categorization, visual search, generalization, transfer. 
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Introduction 

Learning about categories is critically important in everyday life. Categorization 

reduces the complexity of the environment by allowing for interaction with a smaller (but 

still extensive) set of categories instead of treating each new object as unique. In particular, 

categorizing a new object allows for a series of inferences about the object’s properties and 

possible uses. For example, categorizing a new object as a ‘chair’ suggests that it is 

probably sufficiently robust to carry one’s weight and that it is possible to sit on it. Given 

the importance of categorizing objects in large visual scenes, it should be possible to 

perform a visual search for a given category. Yet, this intuitive hypothesis was challenged 

by Smith, Redford, Gent & Washburn (2005). Herein, we revisit the question and examine 

visual search for two types of category structures. 

Visual search and categorization 

The above example points to at least two different components that are rarely a 

focus of categorization research. First, the object (‘chair’ in this example) needs to be 

segregated from the remainder of the scene in order to be identified as something that can 

be categorized (Hélie, 2017). Second, the categorization judgment is typically a means to 

an end, and is important to the extent that it provides information about additional 

properties of the object (Hélie & Ashby, 2012). 

In a clever series of experiments, Smith and his colleagues (2005) tested the effect 

of display size on categorization judgment using the visual-search and categorization 

(VSC) task. In the VSC task, participants are first trained to categorize individual stimuli 

as members of one of a number of contrasting categories. After the categories have been 

learned, the participants transfer to a visual-search task where a number of stimuli are 
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simultaneously presented and the participant’s task is to find members of a target category 

in the display. This kind of transfer task is very important because the VSC task allows for 

studying how participants can parse a relatively complex scene in order to achieve a 

categorization decision. The results in Smith et al. (2005) were compelling: Categorization 

accuracy collapsed to (almost) chance performance as soon as more than one stimulus was 

presented simultaneously. Further exploration with the VSC paradigm suggests that 

difficulties in categorization persisted with a reduced number of categories, additional 

training with distractors, changes in the visual aspect of the stimuli, and changes in stimulus 

overlap in the display (Smith et al., 2005). The only factor that reduced the effect of display 

size in the VSC task was an increased similarity between members of the same category. 

Results in the VSC task are counterintuitive considering that humans regularly 

parse scenes in everyday life to identify and categorize objects. One possibility is that the 

category representations learned during the category training portion of the VSC task were 

not sufficient to support visual search (Ell, Smith, Peralta, & Hélie, 2017; Hélie, Ell, & 

Shamloo, 2017). Categorization and visual search are two different tasks, and Hélie and 

colleagues have shown that the structures of the learned categories affect the generality and 

transferability of the category representations. For example, Hélie and Ashby (2012) 

trained participants using either rule-based (RB) or information-integration (II) category 

structures and then had participants transfer to a “same”-“different” categorization (SDC) 

task. In the SDC task, the participants see two stimuli simultaneously and are asked whether 

the two stimuli belong to the same category or not. The results show that participants can 

transfer their category knowledge to the SDC task only when the category structures are 

rule-based (e.g., verbalizable). When the category structures require the integration of 
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information from more than one stimulus dimension at a pre-decisional stage (e.g., not 

verbalizable), there was little transfer from the categorization task to the SDC task. Hélie 

and Ashby argued that learning different category structures leads to different kinds of 

category representations, and that different category representations allow for different 

generalizability and transfer performance.  

The nature of the categorical representations was further explored in Hélie and 

Cousineau (2015). In a series of experiments, Hélie and Cousineau tested the effects of 

backward masking and integration masking on RB and II categorization performance. The 

results show that RB categorization is more robust than II categorization to short delays 

between the stimulus and mask in backward masking, and to more opaque masks in 

integration masking. Hélie and Cousineau suggested that both backward masking and 

integration masking reduce the signal-to-noise ratio of the stimulus. RB category 

representations may be feature-based and more digital, which would explain their increased 

robustness to noise, whereas II category representations may be more holistic and analog, 

which would explain their increased sensitivity to noise (Hélie & Cousineau, 2015). These 

results are consistent with Hélie and Ashby (2012) in that the difference between two 

category members may be considered “decision noise”, and RB categories would be more 

robust than II categories to these differences in the SDC task. 

Given Hélie and Ashby’s (2012) results, one might expect that the category 

structures may have a critical effect on performance in the VSC task. For example, Smith 

et al. (2005) used the well-known dot-distortion paradigm of category learning. This task 

was a natural choice given the amount of research that has been done with these stimuli. 

However, it is unclear whether these stimuli produce representations similar to RB or II 
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category structures. Given the difficulty in verbalizing a rule to categorize dot-distortions, 

it is possible that the category structures in Smith et al. required the integration of several 

stimulus dimensions at a pre-decisional stage. If this is the case, then the category 

representations would be less general (e.g., more task-specific) and the results would be 

consistent with Hélie and Ashby’s explanation of the generality of category 

representations. Moreover, this would suggest that category knowledge may not collapse 

(i.e., revert back to near-chance performance) in the VSC task if RB category structures 

are used instead. This is because the category representations learned with RB categories 

seem to be more general and transferable to new tasks than the category representations 

learned with II categories (Hélie & Ashby, 2012). One goal of this article is to directly 

manipulate category structures (Experiment 2) in order to explore how it affects 

performance in the VSC task. 

Another possible explanation for Smith et al.’s (2005) results is that the strategy 

used by participants in the visual search task may interact with the category structures. One 

possible strategy for searching for a member of category “A” in a complex display is to 

sequentially look at each stimulus and (mentally) ask the question “Is this an A?”. Maddox 

and colleagues (2004) used this task (hereafter referred as “YES/NO”) and participants 

were unable to learn II category structures when queried about category membership. Ell 

et al. (2017) showed learning of II categorization with participants performing the YES/NO 

task, but the amount of learning was modest. In contrast, Hélie et al. (2017) found 

unimpaired II category learning with the YES/NO task. However, while there are some 

inconsistencies with regards to YES/NO performance with II category learning, all three 

studies found that participants were unimpaired in learning RB category structures in the 
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YES/NO task.  

While categorization instructions may interact with category structures in early 

learning, it is unclear whether participants can shift from one set of instructions to another 

after the categories have been learned. If the interaction persists, then it is possible that 

categorization knowledge collapsed in the VSC task because the strategy adopted in the 

visual-search task (YES/NO) was at least partly incompatible with the category structures. 

This possibility needs to be addressed before we can explore the interaction between 

category structures and performance in the VSC task (Experiment 1).  

Finally, if participants are using a strategy in which they are categorizing each 

stimulus one by one, then adding redundancy, e.g. by having more than one target present 

in the display, could reduce the collapse in the VSC task. Experiment 3 tests for this 

possibility by replicating Experiment 2 with the exception that more than one target can be 

present in the VSC task. 

Overview of the experiments 

The main goal of this research was to explore how performance in the VSC task 

interacts with category structures. This was done by performing three different 

experiments. All experiments used sine-wave gratings of constant contrast and size. Figure 

1a shows an example stimulus, Figure 1b shows RB category structures, and Figure 1c 

shows II category structures. Note that these are the same stimuli and category structures 

used in Hélie & Ashby (2012).  
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(a) (b) (c) 

Figure 1. Stimuli and category structures used in the experiments. (a) Example stimulus. 

(b) Rule-based categories. (c) Information-integration categories. Each stimulus is a sine-

wave grating. The horizontal axis in each panel represents the frequency (inversely 

proportional to bar width) and the vertical axis in each panel represents the bar orientation 

(counterclockwise rotation from horizontal). 

 

Experiment 1 tested whether participants could transfer knowledge when shifting 

from a regular category training condition (i.e., press “A” if the stimulus is an “A” and “B” 

if the stimulus is a “B”; henceforth referred to as A/B training) to YES/NO categorization 

(“Is this an ‘A’?”). Successful transfer is critical because changing from category training 

to visual search in the VSC task may involve a similar change in decisional process. Earlier 

studies have shown that participants can be impaired when learning II category structures 

(e.g., Figure 1c) with the YES/NO task (Ell et al., 2017; Maddox et al., 2004). Yet, it is 

unclear whether participants can perform the YES/NO task with II categories after having 

been trained with an A/B paradigm. To test for this possibility, Experiment 1 trained 

participants in A/B categorization before transferring to a YES/NO task that used the same 

category structures. Accuracy in the last training block of classification was compared with 

accuracy in the YES/NO transfer block. If accuracy in the transfer block is similar to 

accuracy in the last block of training, then the possible change in strategy in the VSC task 
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is not responsible for the collapse in performance. However, if the transfer block shows a 

cost in accuracy, then it is possible that the collapse observed in the VSC task by Smith et 

al. (2005) was caused by a lack of proper training. To anticipate, Experiment 1 shows 

perfect transfer accuracy from A/B training to the YES/NO categorization paradigms with 

both RB and II category structures. Hence, this possible change in decisional process 

cannot account for Smith et al.’s results in the VSC task. 

Having established that participants can transfer from an A/B to a YES/NO 

paradigm with both category structures, Experiment 2 directly addressed the main goal of 

the research: Is performance in the VSC task affected by category structures? To explore 

this possibility, two groups of participants were trained using either RB or II category 

structures and then were transferred to the visual search task. The effect of display on 

accuracy was separately calculated for target-present and target-absent trials. Obtaining a 

similar collapse in VSC accuracy in both conditions would suggest a general effect of the 

VSC task, whereas differential changes in performance for each condition would suggest 

that category structures modulate performance in the VSC task. The results with II 

categories reproduced Smith et al.’s (2005) results as categorization performance declined 

with display size, and this was caused by low accuracy in target-absent trials. However, in 

line with Hélie & Ashby (2012), RB categories were mostly spared and performance did 

not collapse with display size. Experiment 3 tested the effect of target redundancy by 

reproducing Experiment 2 but this time allowing for more than one target to be present on 

target present trials. As in Experiment 2, the effect of display on accuracy was separately 

calculated for target-present and target-absent trials. If accuracy in the VSC task is higher 

in Experiment 3 then in Experiment 2, then it is possible that the redundancy present in the 
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natural world prevents collapse of categorical knowledge in visual search outside the 

laboratory. The results in Experiment 3 were very similar to those obtained in Experiment 

2, in that performance collapsed for II stimuli but not for RB stimuli. Furthermore, the 

collapse with II stimuli was again seen only on target-absent trials. Hence, target 

redundancy did not have much of an effect in the VSC task. 

Experiment 1 

To successfully achieve the VSC task, each stimulus in the display needs to be 

individually categorized. Assuming the search is unrestricted, one possible process to 

achieve this goal is to consider each stimulus individually and ask the question ‘Is this a 

target?’ where target stands for the category that is currently being searched for. In 

Experiment 1, we explored whether using this strategy in the visual search portion of the 

VSC task could affect the ability of participants to successfully perform the task using RB 

and II category structures (as in Figure 1). Participants in past studies have sometimes 

showed impaired learning of II categories when asked categorization questions such as ‘Is 

this an A?’ or ‘Is this a B?’ (i.e., YES/NO training) (Ell et al., 2017; Maddox et al., 2004). 

This result could account for some of the difficulties that participants experienced in the 

VSC task when no verbal rule is available to describe the categories (as in Smith et al., 

2005). However, it is unclear whether participants are only impaired in nonverbal learning 

in the YES/NO paradigm or if they are also impaired in using nonverbal knowledge once 

it has been learned. Experiment 1 addressed this question by training participants using a 

standard A/B training protocol and then transferring to a YES/NO condition. Establishing 

that participants can use their nonverbal knowledge to answer categorical questions is 

essential in interpreting the results of the VSC task. 
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Method 

Participants 

Forty-three undergraduate students at the University of California Santa Barbara 

were recruited to participate in Experiment 1. Twenty-one participants were trained using 

the RB category structures from Figure 1b, and the remaining 22 participants were trained 

using the II category structures from Figure 1c. Sample size was determined by using 

G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007). With an effect size of 0.25 and 

α = 0.05, 38 participants are sufficient to achieve a power of 0.85. Each participant was 

given credits for participation as partial completion of a course requirement. 

Apparatus and stimuli 

The stimuli were sine-wave gratings of constant contrast and size presented on a 

21-inch LCD monitor (1280 × 1024 resolution). Each stimulus was defined by a pair (x1, 

x2) sampled from an arbitrary 100 × 100 stimulus space and converted to a disk using the 

following equations: frequency = x1 / 30 + 0.25 cpd, and orientation = 9x2 / 10 + 20 

degrees. This yielded stimuli that varied in orientation from 20 to 110 degrees 

(counterclockwise from horizontal) and in frequency between 0.25 and 3.58 cpd. The 

stimuli were generated with Matlab using Brainard’s (1997) Psychophysics Toolbox and 

occupied an approximate visual angle of 5 degrees. They were shown on a grey background 

(RGB of 128, 128, 128). 

For the RB condition (Figure 1b), category “A” stimuli were generated using two 

multivariate normal distributions with the following parameters (Ashby & Gott, 1988): µa1 

= {30, 50}; Σa1 = {10, 0; 0, 150} and µa2 = {50, 70}; Σa2 = {150, 0; 0, 10}. A similar 

sampling method was used to generate category “B” stimuli: µb1 = {50, 30}; µb2 = {70, 
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50}; Σb1 = Σa1; and Σb2 = Σa2. For the II condition (Figure 1c), category “A” stimuli were 

generated using a multivariate normal distribution with the following parameters: µa = {40, 

50}; Σa = {10, 0; 0, 280}. The same sampling method was used to generate category “B” 

stimuli: µb = {60, 50}; Σb = Σa. The resulting stimuli were then rotated 45° 

counterclockwise around the center point of stimulus space. Note that perfect accuracy was 

possible in both conditions. 

Stimulus presentation, feedback, response recording, and response time (RT) 

measurement were acquired and controlled using Matlab. The stimuli in both phases were 

centered both vertically and horizontally and occupied about five degrees of visual angle. 

The participants responded by using the ‘d’ and the ‘k’ keys on a standard keyboard 

(identified with blank stickers). The key labels were displayed on the screen. During the 

training phase (A/B training; Blocks 1 to 5), the ‘A’ label appeared at the bottom-left of 

the screen (associated with the ‘d’ key) and the ‘B’ label appeared at the bottom-right of 

the screen (associated with the ‘k’ key). At test (YES/NO; Block 6), the ‘YES’ label 

appeared at the bottom-left of the screen (associated with the ‘d’ key) and the ‘NO’ label 

appeared at the bottom-right of the screen (associated with the ‘k’ key). In addition, the 

question “Is this an ‘A’?” was displayed in the middle top of the screen on half of the test 

trials. During the remaining test trials, the question “Is this a ‘B’?” was displayed instead. 

No question was displayed during the training phase.  

Importantly, the category structures were the same in both the training and test 

phases, and the participants were told to use the knowledge acquired during the training 

phase in the test phase. Correct responses were followed by the word ‘Correct’ in green 

font in the middle of the screen and incorrect responses were followed by the word 
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‘Incorrect’ in red font in the middle of the screen. If a response was too late (more than 5 

seconds), participants saw the words “Too slow!” in black font. If a participant hit a wrong 

key, s/he saw the words “Wrong key!” in black font. Half of the stimuli in the training 

phase were ‘A’s and the remainder were ‘B’s. Similarly, half the stimuli were ‘A’s and the 

remainder were ‘B’s during the test phase, and category membership was counterbalanced 

with the category inclusion questions.  

Procedure 

Each experimental session was composed of 6 blocks of 100 trials (for a total of 

600 trials). During the training phase (Blocks 1 to 5), participants partook in a regular 

perceptual categorization task (A/B training). Their task was to assign each stimulus to the 

‘A’ or ‘B’ category by pressing the left or right buttons (respectively) as labeled on the 

screen. During the test phase (Block 6), the participants were shown a stimulus along with 

a categorical inclusion question (e.g., “Is this an ‘A’?”) (YES/NO paradigm). Participants 

responded ‘yes’ or ‘no’ by pressing the left or right button (respectively) as labeled on the 

screen. In both the training and test phases, a trial proceeded as follows: a fixation point 

(crosshair) appeared on the screen for 1,500 ms and was followed by the stimulus and 

response button labels (with a simultaneous category inclusion question during the test 

phase), which remained on the screen until the participant made a response. After a 

response was made, the stimulus, response button labels (and question) disappeared and 

correct or incorrect feedback was given for 750 ms. The participants were allowed to take 

a break between blocks if they wished. 
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Results 

Accuracy 

The mean accuracy per block for each condition is shown in Figure 2a. As can be 

seen, participants in both conditions improved with practice. This was confirmed by a 2 

(RB vs. II) × 5 (Training Block) ANOVA. The effect of Block was significant (F(4, 164) 

= 7.09, p < .001), with mean accuracies increasing from 69.2% (Block 1) to 76.0% (Block 

5). The effect of Condition (F(1, 41) = 3.30, n.s.) and its interaction with Block failed to 

reach statistical significance (F(4, 164) = 1.29, n.s.). 

 
            (a)                  (b) 

Figure 2. Results of Experiment 1. (a) Mean accuracy as a function of Block for both 

groups. (b) Mean correct response time. In both panels, the vertical dashed line separates 

the training phase from the test phase. The rectangle highlights the relevant comparison to 

test for transfer effects. Error bars represent one standard error of the mean. 

 

A more important question is whether there is a difference in performance between 

the last training block and the test block (the black rectangle in Figure 2a). A 2 (RB vs. II) 

× 2 (Block 5 vs. Block 6) ANOVA was performed on accuracies. As suggested by the 
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Figure, there was no effect of Block, Condition, or interaction (all Fs < 1.92, n.s.). Hence, 

there was no evidence of a transfer cost when changing from an A/B categorization task to 

a YES/NO task after category training had already occurred. 

Response times 

The mean correct RTs are shown in Figure 2b. As can be seen, participants became 

faster during the training phase in both conditions. However, response times were much 

slower during the test phase (in both conditions). These observations were confirmed by a 

2 (RB vs. II) × 5 (Training Block) ANOVA. The effect of Block was again significant (F(4, 

164) = 12.63, p < .001), with correct response times decreasing from 891 ms (Block 1) to 

758 ms (Block 5). The effect of Condition (F(1,41) = 1.03, n.s.) and its interaction with 

Block failed to reach statistical significance (F(4, 164) < 1, n.s.). 

Similar to accuracies, we also performed a 2 (RB vs. II) × 2 (Block 5 vs. Block 6) 

ANOVA on mean correct RTs (the black rectangle in Figure 2b). Not surprisingly, there 

was a large effect of Block (F(1, 41) = 296.60, p < .001). Participants were much slower 

in the test phase (a difference of 599 ms), which could be caused by reading the question 

at the top of the screen. However, this slowdown was similar in both conditions, as 

suggested by the absence of statistically significant effect of Condition (F(1, 41) = 1.89, 

n.s.) and its interaction with Block (F(1, 41) < 1, n.s.). 

Discussion 

The goal of Experiment 1 was to test whether participants could transfer from an 

A/B category learning task to a YES/NO categorization task with both RB and II category 

structures. Addressing this question is critical to interpreting results from the VSC task, 

because this switch from A/B to YES/NO may mirror a switch in decisional process 
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between the categorization and visual-search phases in the VSC task. The results from 

Experiment 1 show that participants can make the switch from A/B to YES/NO instructions 

without any interference on accuracy with both RB and II category structures. This result 

is important considering that learning II categories with the YES/NO task has produced 

unreliable results in the past (Ell et al., 2017; Hélie et al., 2017; Maddox et al., 2004). 

However, the present experiment suggests that using knowledge acquired from II 

categorization in a YES/NO tasks does not pose problem. Hence, it is unlikely that the 

collapse of category knowledge observed in Smith et al. (2005) was caused by such a 

change. Having ruled out this possibility, we can now proceed to exploring whether 

category structures affect performance in the VSC task. 

Experiment 2 

Experiment 1 showed that participants can do a YES/NO task after having learned 

the categories using A/B training with both RB and II category structures. We are now in 

a position to test whether performance in the VSC task is affected by the category 

structures. In Experiment 2, participants performed the VSC task using stimuli drawn from 

RB or II category structures.  Because Hélie and Ashby (2012) showed that participants 

can transfer RB, but not II, category knowledge to the SDC task, we hypothesized that II 

category knowledge should collapse more markedly in the VSC task than RB category 

knowledge. 

Method 

Participants 

Fifty-eight undergraduate students at Purdue University were recruited to 

participate in Experiment 2. Thirty participants were trained using the RB category 
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structures from Figure 1b, and the remaining 28 participants were trained using the II 

category structures from Figure 1c. Sample size was determined by using G*Power 3.1.9.2 

(Faul et al., 2007). With an effect size of 0.25 and α = 0.05, 54 participants are sufficient 

to achieve a power of 0.95. Each participant was given credits for participation as partial 

completion of a course requirement. None of the participants had participated in 

Experiment 1. 

Apparatus and stimuli 

The stimuli and category structures were the same as in Experiment 1. The sine-

wave gratings were presented on a 21-inch LCD monitor (1920 × 1080 resolution) and 

occupied 5 degrees of visual angle (as in Experiment 1). The response keys and the 

response labels displayed at the bottom of the screen were also the same as in Experiment 

1. In the category learning phase, ‘A’ was displayed in the bottom-left of the screen and 

‘B’ was displayed at the bottom-right (corresponding to the ‘d’ and ‘k’ keys, respectively). 

In each trial, one stimulus was displayed in the center of the screen (as in Experiment 1).  

In the visual search phase, ‘YES’ was displayed in the bottom left and ‘NO’ was 

displayed in the bottom right (corresponding to the ‘d’ and ‘k’ keys, respectively, as in the 

test phase of Experiment 1). The screen was partitioned horizontally into 4 non-overlapping 

regions of equal sizes. There was no marking on the screen to indicate the partitions. 

Between 1 and 4 stimuli appeared simultaneously on the screen, with at most one stimulus 

per region (so that each region contained either one stimulus or no stimulus). The stimuli 

in the visual search task were centered vertically in each region. On each visual search trial, 

a question was displayed in the top-center screen asking ‘Is there an A?’ or ‘Is there a B?’. 

An example trial from the visual phase is shown in Figure 3. 
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Figure 3. An example trial in the VSC task with a display complexity of four. 

 

Procedure 

The experiment was composed of two sessions scheduled during the same work 

week. In Session 1, all participants were trained for six blocks of 100 trials using an A/B 

paradigm identical to the training phase of Experiment 1 (using either RB or II category 

structures). In Session 2, participants were trained with the same category structures as in 

Session 1. Session 2 went as follows: First, participants were trained for one block of 100 

trials in A/B categorization. This was a refresher of Session 1. Next, participants were 

trained for 6 blocks of 80 trials in the visual search task. 

The procedure in the A/B category learning phase was the same as in the training 

phase of Experiment 1. In the visual search phase, participants saw between one and four 

stimuli on the screen. The participants were then asked to press ‘YES’ if they could find a 

target on the screen (as defined by the question on the screen) and ‘NO’ otherwise. 

Participants then received the same feedback as in the categorization experiment. 

Participants were told that the categories were the same as in the categorization 

phase and that they should therefore use their category knowledge. The target was a 

member of the ‘A’ category in half of the trials and of the ‘B’ category in the other half. 

When participants were looking for an ‘A’, a single ‘A’ stimulus was present in half of 
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these trials (a “target-present” trial), with the other half containing no ‘A’ stimulus (a 

“target-absent” trial). The same applied to trials where participants were looking for a ‘B’, 

yielding four types of trials. Each type of trials had the same number of trials of each 

display size (1 to 4). In all trials, distractors were randomly sampled from the non-target 

category. As in Experiment 1, participants could take a break between blocks. 

Results 

Accuracy 

The mean accuracy per block for each condition is shown in Figure 4a. Blocks 1 to 

7 are from the categorization phase while Blocks 8 to 13 are in the visual search phase. As 

can be seen, participants' accuracy in both conditions improved with practice in the 

categorization phase, but not much in the visual search phase. We performed separate 

ANOVAs for each phase. For the categorization phase, a 2 (RB vs. II) × 7 (Block) ANOVA 

confirmed the previous observations. The effect of Block was statistically significant (F(6, 

336) = 7.40, p < .001), with mean accuracies increasing from 68.9% (Block 1) to 76.0% 

(Block 7). Similar to Experiment 1, the effect of Condition (F(1, 56) = 1.88, n.s.) and its 

interaction with Block failed to reach statistical significance (F(6, 336) = 0.27, n.s.). A 

similar 2 (RB vs. II) × 6 (Block) ANOVA was computed for the visual search task. None 

of the effects was statistically significant: Condition (F(1, 56) = 3.38, p = .071); Block 

(F(5, 280) = 1.42, n.s.); Condition × Block (F(5, 280) = 0.54, n.s.). The mean accuracy in 

visual search was 65.3%. 
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(a)                                                                   (b) 

Figure 4. Results of Experiment 2. (a) Mean accuracy as a function of Block for both 

groups. (b) Mean correct response time. In both panels, the vertical dashed line separates 

the categorization phase from the visual search phase. The rectangle highlights the relevant 

comparison to test for transfer. Error bars represent one standard error of the mean. 

 

Similar to Experiment 1, we also tested transfer performance from the last block of 

categorization to the first block of visual search (the black rectangle in Figure 4a). A 2 (RB 

vs. II) × 2 (Block 7 vs. Block 8) ANOVA was performed on accuracies. As suggested by 

the Figure, accuracies decreased in both condition when transferring from the 

categorization phase to the visual search phase (F(1, 56) = 96.76, p < .001). The mean 

accuracy in Block 7 was 76.0%, which decreased to 65.8% in Block 8. The effect of 

Condition (F(1, 56) = 2.55, n.s.) and its interaction with Block (F(1, 56) = 1.61, n.s.) both 

failed to reach statistical significance. 

Response times 

The mean correct RTs are shown in Figure 4b. As can be seen, participants became 
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faster with training in both phases and in both conditions. Response times in the RB 

condition appeared to be slightly faster than in the II condition in the categorization phase. 

Similar to accuracies, we computed separate ANOVAs for the categorization and visual 

search phases. For the categorization task, a 2 (RB vs. II) × 7 (Block) ANOVA confirmed 

the previous observations. The effect of Block was statistically significant (F(6, 336) = 

10.92, p < .001), with mean correct RTs decreasing from 953 ms (Block 1) to 783 ms 

(Block 7). However, unlike accuracies, the effect of Condition also reached statistical 

significance (F(1, 56) = 6.49, p < .05). The mean correct RT for RB trials was 789 ms, 

whereas II trials were slower with a mean correct RT of 924 ms. Finally, the Condition × 

Block interaction failed to reach statistical significance (F(6, 336) = 1.73, n.s.). 

A similar 2 (RB vs. II) × 6 (Block) ANOVA was computed for the visual search 

phase. Mean correct RTs decreased with practice in both condition (F(5, 280) = 18.9, p < 

.001). Mean correct RTs decreased from 1,738 ms (Block 8) to 1,299 ms (Block 13). 

However, unlike what was seen in the categorization phase, the effect of Condition (F(1, 

56) = 0.74, n.s.) failed to reach significance. The interaction with Block (F(5, 280) = 0.79, 

n.s.) was also not significant. As hinted by the standard error bars, variability in RT was 

larger in the visual search phase than in the categorization phase. This was likely caused 

by the fact that multiple locations must be examined in the latter. 

Finally, we also tested transfer performance from the last block of categorization to 

the first block of visual search (the black rectangle in Figure 4b). A 2 (RB vs. II) × 2 (Block 

7 vs. Block 8) ANOVA was performed on correct RTs. As suggested by the Figure, RTs 

increased in both condition when transferring from the categorization phase to the visual 

search phase (F(1, 56) = 148.16, p < .001). However, the effect of Condition (F(1, 56) = 
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2.95, n.s.), and its interaction with Block (F(1, 56) = 0.01, n.s.), both failed to reach 

statistical significance. 

Display size effect in the VSC task 

Smith et al. (2005) found an important effect of display size in the visual search 

phase of the VSC task. One of the goals of the current experiment was to test whether the 

collapse of category knowledge would interact with category structures. Figure 5 shows 

visual-search accuracies averaged across all blocks for target-present and target-absent 

trials as a function of display size for each category structure. As can be seen, accuracies 

for RB trials (both target-present and target-absent) and for target-present II trials seemed 

to be relatively stable across display size. However, performance in target-absent II trials 

substantially decreased with display size.  

 

(a) (b) 

Figure 5. The effect of display size on (a) rule-based and (b) information-integration 

accuracies in Experiment 2. Error bars represent one standard error of the mean. 

 

To verify these observations, we performed a separate 2 (target-present vs. target-
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absent) × 4 (Display Size) ANOVA for each category structure. For the RB category 

structures, the effect of Display Size reached statistical significance (F(3, 87) = 7.59, p < 

.001). However, the effect of target presence/absence (F(1, 29) = 0.63, n.s.) and the Target 

× Display Size interaction  (F(3, 87) = 1.02, n.s.) both failed to reach statistical significance, 

showing no evidence of differential difficulty for target-present and target-absent trials.  

The slope (estimated from a linear regression) is -1.7% per additional item (±0.7%, 

where the sign ± is used to denote the standard error of the estimate). It is not different 

from the slopes calculated separately for target-absent (-2.0% per item) and target-present 

(-1.4% per item) trials, an unusual finding in visual search studies that will be explained 

when the results of Experiment 3 are examined. This shallow slope finding is smaller than 

the results from Smith et al. (2005) (although they did not report results separately for 

target-present and target-absent trials). It suggests that accuracies with RB stimuli decrease 

slightly, but do not collapse, when display size increases.  

For the II category structures, there was also an effect of Display Size (F(3, 81) = 

14.06, p < .001). However, unlike in the RB condition, the effect of target presence or 

absence (F(1, 27) = 4.28, p < .05), as well as the interaction between the factors (F(3, 81) 

= 20.62, p < .001), were also statistically significant. We proceeded to decompose the 

interaction by computing the effect of Display Size in each level of Target. For target-

present trials, the effect of Display Size failed to reach statistical significance (F(3, 81) = 

0.19, n.s.). The slope was +0.1% per additional item ± 0.5%. However, the effect of Display 

Size reached statistical significance for target-absent trials (F(3, 81) = 25.30, p < .001). The 

slope was -5.0% per additional item ± 0.8%. Hence, for II trials, categorization accuracy 

collapsed with increased display size and returned to chance performance only when the 
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target was absent. This is different from RB trials, where the effect of display size was 

quite small (less than 2% / item) but affected both target-present and target-absent trials 

similarly. 

Discussion 

The goal of Experiment 2 was to test whether performance in the VSC task was 

affected by the structures of the categories. Participants were trained with either RB or II 

category structures and then transferred to a visual search phase. The results show that 

display size affects accuracies with both RB and II category structures. However, the most 

notable effect of display size is for target-absent trials with II category structures, where 

accuracy decreased by about 5% for every additional item. In contrast, the presence or 

absence of a target does not influence the effect of display size with RB structures. The 

decrease in target-absent trials is 3 times less pronounced in RB relative to II, hardly a 

collapse in performance. This selective effect of display size on target absent II trials was 

not anticipated or predicted by earlier results. 

These findings suggest that only performance with II stimuli when the target is 

absent collapse with larger display sizes. Smith et al. (2005) did not analyze target-present 

and target-absent trials separately. Thus, the collapse in categorization performance they 

observed may have been caused by a collapse mainly in the target-absent trials under the 

assumption that the complex polygons stimuli that they used were processed similarly to 

II stimuli (i.e., requiring pre-attentional feature integration). If each stimulus is judged 

independently, the probability of producing a false alarm (making an error in target-absent 

trials) increases with display size. In contrast, the probability of missing a target (making 

an error in target-present trial) should not be affected by display size, at least if the search 
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is exhaustive (which we can reasonably assume it to be at these display sizes). As a result, 

performance with the II stimuli in the VSC task is not surprising. What is more unexpected 

is the small effect of display size observed for absent trials with RB stimuli. This result—

and the fact that the same effect is found for target-present trials—is consistent with a 

model of premature search termination, where each additional item only adds a fraction of 

the increased likelihood of false alarm (Cousineau & Shiffrin, 2004). For RB participants, 

this may be a small trade-off strategy that results in barely any errors and so may have been 

judged acceptable by the participants. In II, the collapse may have been perceived by the 

participants themselves who therefore kept an exhaustive termination rule as their strategy. 

Experiment 3 

The goal of Experiment 3 was to test whether target redundancy could be beneficial 

to II categorization in complex environments. Hélie and Ashby (2012) showed that the 

representation built with II learning is less generalizable and more difficult to use in new 

contexts. Adding target redundancy in the display, which is more ecologically valid in the 

highly redundant visual world we live in, might help reduce the collapse in performance in 

the VSC task.  

Method 

Participants 

Forty-six undergraduate students from Purdue University were recruited to 

participate in Experiment 3. Twenty-three participants were trained using the RB category 

structures from Figure 1b, and the remaining 23 participants were trained using the II 

category structures from Figure 1c. Sample size was determined by using G*Power 3.1.9.2 

(Faul et al., 2007). With an effect size of 0.25 and α = 0.05, 46 participants are sufficient 
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to achieve a power of 0.9. Each participant was given credits for participation as partial 

completion of a course requirement. None of the participants had participated in 

Experiment 1 or 2. 

Apparatus and stimuli 

The material was identical to that of Experiment 2. 

Procedure 

The procedure was identical to that of Experiment 2, except for target-present trials 

in the visual search task. For these trials, each stimulus in the display was equally likely to 

be a member of category “A” or “B”, with the restriction that at least one of the stimuli in 

the display was from the target category. Participants were informed that more than one 

target might be present in each display. 

Results 

Accuracy 

The mean accuracy per block for each condition is shown in Figure 6a. As in 

Experiment 2, Blocks 1 to 7 are from the categorization phase while Blocks 8 to 13 are 

from the visual search phase. Again, participants in both conditions improved with practice 

in the categorization phase, but not much in the visual search phase. In both tasks, the RB 

condition was easier than the II condition. We performed separate ANOVAs for each 

phase. For the categorization phase, a 2 (RB vs. II) × 7 (Block) ANOVA confirmed the 

previous observations. The effects of Block (F(6, 258) = 13.76, p < .001) and Condition 

(F(1, 43) = 14.49, p < .001) both reached statistical significance. However, these main 

effects must be interpreted with care since the interaction also reached statistical 

significance (F(6, 258) = 2.30, p < .05). We proceeded to decompose the effect of Block 
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within each level of Condition. Participants improved their performance in the RB task 

(F(6, 126) = 10.37, p < .05), with accuracies increasing from 73.4% in Block 1 to 89.4% 

in Block 7. In the II task, participants also improved their accuracies (F(6, 132) = 3.62, p 

< .01), with accuracies increasing from 70.7% in Block 1 to 77.5% in Block 7. The 

interaction was thus produced by a larger improvement in the RB condition. 

 

 

                                   (a)    (b) 

Figure 6. (a) Mean accuracy for each condition in Experiment 3. (b) Mean correct response 

time in Experiment 3. In both panels, the vertical dashed line separates the categorization 

phase from the visual search phase. The rectangle highlights the relevant comparison to 

test for transfer. Error bars represent one standard error of the mean. 

 

In the training phase, we note that participants in the RB condition are more 

accurate in Experiment 3 (a significant Condition effect) but slower (compare Figure 6b 

with Figure 4b). Hence, it is possible that the participants in this experiment understood 

the experimental instructions as implying a stronger emphasis on accuracy relative to 
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Experiment 2. This strategy shift (slower, more accurate responding) suggests that RB 

participants may have been more cautious (although the instructions were the same). This 

may impact the visual search performed at transfer, reducing the likelihood of a premature 

stop. If this explanation is correct, the miss rate should be reduced in the VSC task, thus 

restoring an asymmetry between the false alarm rate and the miss rate. 

A 2 (RB vs. II) × 6 (Block) ANOVA was computed for the visual search task. 

Similar to the categorization task, accuracies were higher in the RB condition than in the 

II condition (F(1, 44) = 15.99, p < .001). Participants in both conditions did not improve 

much with practice (F(5, 220) = 1.21, n.s.), but the interaction between the factors reached 

statistical significance (F(5, 220) = 3.23, p < .01). We again proceeded to decompose the 

effect of Block within each level of Condition. For the RB condition, the effect of Block 

was statistically significant (F(5, 110) = 2.90, p < .05), showing that the lowest accuracy 

(78.6%, Block 11) differed from the highest accuracy (83.9%, Block 13). In contrast, the 

effect of Block was not statistically significant in the II condition (F(5, 110) = 0.44, n.s.). 

As in Experiment 2, we also tested transfer performance from the last block of 

categorization to the first block of visual search (the black rectangle in Figure 6a). A 2 (RB 

vs. II) × 2 (Block 7 vs. Block 8) ANOVA was performed on accuracies. As suggested by 

the Figure, accuracies decreased in both conditions when transferring from the 

categorization phase to the visual search phase (F(1, 44) = 39.52, p < .001). The effect of 

Condition also reached statistical significance, with accuracies in the RB condition being 

higher than accuracies in the II condition both before and after transfer (F(1, 44) = 29.75, 

p < .01). Finally, the Condition × Block interaction failed to reach statistical significance 

(F(1, 44) = 0.03, n.s.). 
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Response times 

The mean correct RTs are shown in Figure 6b. As can be seen, participants became 

faster with training in both phases in both conditions. Similar to accuracies, we computed 

separate ANOVAs for the categorization and visual search phases. For the categorization 

task, a 2 (RB vs. II) × 7 (Block) ANOVA confirmed the previous observation. The effect 

of Block was statistically significant (F(6, 258) = 17.35, p < .001), with mean correct RTs 

decreasing from 1,000 ms (Block 1) to 713 ms (Block 7). However, unlike accuracies, the 

effect of Condition (F(1, 43) 0.11, n.s.), and its interaction with Block (F(6, 258) = 0.98, 

n.s.), both failed to reach statistical significance. This is different from Experiment 2 where 

the effect of Condition was also significant. 

A similar 2 (RB vs. II) × 6 (Block) ANOVA was computed for the visual search 

phase. The pattern of results was analogous to that of the categorization phase. Mean 

correct RTs decreased with practice in both conditions (F(5, 175) = 12.71, p < .001). Mean 

correct RTs decreased from 1,739 ms (Block 8) to 1,311 ms (Block 13). As in the 

categorization phase, the effect of Condition (F(1,35) = 1.55, n.s.) and its interaction with 

Block (F(5, 175) = 1.49, n.s.) both failed to reach statistical significance. As was seen in 

Experiment 2, RTs are more variable in the VSC than in the categorization task (as seen 

by larger error bars). 

Finally, we tested transfer performance from the last block of categorization to the 

first block of visual search (the black rectangle in Figure 6b). A 2 (RB vs. II) × 2 (Block 7 

vs. Block 8) ANOVA was performed on correct RTs. As suggested by the Figure, RTs 

increased in both condition when transferring from the categorization phase to the visual 

search phase (F(1, 35) = 266.77, p < .001). The effect of Condition also reached statistical 
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significance, showing that correct responses in the II condition were faster than those in 

the RB condition (F(1,35) = 5.08, p < .05). In contrast, the interaction between the factors 

failed to reach statistical significance (F(1, 35) = 3.38, p = .07).  

Display size in the VSC task 

Figure 7 shows visual-search accuracies across all blocks for target-present and 

target-absent trials as a function of display size for each category structure. As in 

Experiment 2, accuracies for target-present trials seemed to be relatively stable across 

display size for both category structures. Regarding RB, there is little difference between 

the target-absent and target-present accuracies. Accuracies are quite high, but with similar 

and near-zero slopes (the slope is +0.7% per additional items for target-present ± 0.6%, 

and -1.9% per additional items for target-absent, ± 0.6%). The fact that the miss rate is 

smaller than the false alarm rate is more in line with the literature on visual search task. 

This is in agreement with the possible results from the categorization phase suggesting that 

participants might be more exhaustive in the present experiment relative to Experiment 2. 

This is not however a focus of this article, just a small strategic change, as seen by the 

limited influence on accuracy. 
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(a) (b) 

 

Figure 7. The effect of display size on (a) rule-based and (b) information-integration 

accuracies in Experiment 3. Error bars represent one standard error of the mean. 

 

Regarding II, we see a marked distinction between target-present and target-absent 

trials, as was the case for Experiment 2. For target-present trials, accuracy improved by 

about +0.9% ± 0.8% for every additional item whereas for target-absent trials, accuracy 

decreases by about 3.1% for every additional item, ± 0.7%. These slopes are qualitatively 

similar to those of Experiment 2 in the same conditions (-0.1% and -5.0% per item 

respectively for target-present and target-absent trials). There is an offset of 1.5% towards 

more accurate responses in the slopes on average (relative to Experiment 2) but this offset 

is present in both target-present and target-absent trials. 

To verify these observations, we performed a separate 2 (target-present vs. target-

absent) × 4 (Display Size) ANOVA for each category structure. For the RB category 

structures, the effects of Display Size (F(3, 66) = 2.19, p < .10) and target presence/absence 

(F(1, 22) = 0.83, n.s.) both failed to reached statistical significance. However, the 
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interaction between the factors reached statistical significance (F(3, 66) = 5.98, p < .01). 

We decomposed the interaction by looking at the effect of Display Size separately for 

target-present and target-absent trials. For target-present trials, the effect of Display Size 

was statistically significant (F(3, 66) = 2.75, p < .05), with higher levels of complexity 

leading to higher accuracy (increasing from 79.6% to 82.5%; as noted above, a slope of 

+0.7% per item, ± 0.6%). In contrast, the effect of Display size was also statistically 

significant for target-absent trials (F(3, 66) = 5.99, p < .01), but this time higher levels of 

complexity were associated with lower accuracy (decreasing from 84.1% to 77.9%); a 

slope of -1.9% per item, ± 0.6%).  

For II categories, there was an effect of Display Size (F(3, 66) = 2.46, p < .05), 

target presence/absence (F(1, 22) = 16.07, p < .001), and a significant interaction (F(3, 66) 

= 7.25, p < .001). We again decomposed the interaction by looking at the effect of Display 

Size separately for target-present and target-absent trials. Similar to Experiment 2, the 

effect of Display Size did not reach statistical significance for target-present trials (F(3, 66) 

= 1.38, n.s. with a slope of 0.9% per item, ±0.6%), but there was an effect of Display Size 

for target-absent trials (F(3, 66) = 6.00, p < .01 with a slope of -3.1% per item, ±0.7%).  

Discussion 

The results in Experiment 3 are similar to those obtained in Experiment 2. 

Specifically, overall accuracy decreases as display size increases, especially for target-

absent trials with II stimuli. Target redundancy did not help much with II categorization. 

This is perhaps not surprising given that the collapse with II categorization was caused by 

target-absent trials in Experiment 2, and target-absent trials lack redundant targets (by 

definition). However, the collapse could have been countered by increased accuracies with 
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larger display size in target-present trials. This is possible because if the display size is 4 

and all 4 stimuli are target, the probability of 4 misses is smaller than the probability of 1 

miss when only one target is present. However, this result was not observed in Experiment 

3, suggesting that the reduced probability of misses in a redundant environment was absent 

or insufficient in these more complex environments. This result challenges the assumption 

that each categorization decision is strictly independent. A partially parallel search (such 

as Guided Search; Wolfe, 1994) or a parallel search with severely limited capacity 

(Cousineau & Shiffrin, 2004) could be applicable to the present results. An "odd-man out" 

strategy does not capture the results. Whatever the details of the models, none of them 

explain the collapse in accuracies observed exclusively in II conditions during a VSC task. 

General Discussion 

This article presents the results of three experiments exploring the effect of display 

size on perceptual categorization as a function of category structures. In Experiment 1, we 

showed that participants can transfer from an A/B training categorization paradigm to a 

YES/NO categorization paradigm regardless of category structures. Maddox and his 

colleagues (2004) and Ell et al. (2017) have shown that II category structures are difficult 

to learn using a YES/NO categorization paradigm [but see Hélie et al. (2017) for 

unimpaired YES/NO learning with II categories]. Hence, if participants are treating the 

visual search phase of the VSC task as a sequence of YES/NO categorization judgments, 

then the category structures could be responsible for the collapse of category knowledge in 

complex displays observed by Smith et al. (2005). However, the results from Experiment 

1 suggest that category structures are not as important in performing the YES/NO task if 

participants are already familiar with the categories (which was the case in Smith et al., 
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2005). Hence, Experiment 1 ruled out this possibility, and also suggests that the 

incompatibility of the YES/NO task with II category structures observed in some earlier 

studies only applied to initial category learning, not categorization performance. 

Experiment 2 further explored the effect of category structures on display size by 

using the VSC task with two different category structures, namely an RB and an II 

condition. The results show that display size affects performance in the VSC task mostly 

with II stimuli, suggesting that the complex polygon stimuli used by Smith et al. (2005) 

may have required the integration of several stimulus dimensions at a pre-decisional level. 

The results further show that the collapse in categorization accuracy is driven mostly by 

false alarms in target-absent II trials. While Smith et al. did not provide separate analyses 

for target-present and target-absent trials, their results may also be driven by false alarms. 

Another possibility is that the stimuli overlapped in some of Smith et al.’s experiment, 

which was not the case in this article. Experiment 3 reproduced Experiment 2 but allowed 

for target redundancy. The results were similar to those obtained in Experiment 2, 

suggesting that target redundancy did not play a major role in the VSC task. Experiment 3 

also suggests that while each stimulus needs to be individually categorized in order to 

perform the VSC task, the individual categorization decisions may not be strictly 

independent. 

Why is the visual-search categorization task so difficult? 

One important property of the visual search task performed by the participants was 

that the searched-for categories alternated randomly across trials. On a given trial, a 

participant may search for a member of an A category and on another trial, that same 

participant may search for a member of a B category. Alternation of the target categories 
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randomly across trials is called a “Categorical Varied Mapping” condition (CVM; Shiffrin 

& Schneider, 1977; Schneider & Schiffrin, 1977; Cousineau & Larochelle, 2004). This 

training schedule is known to be very difficult, and in fact, if the two alternating categories 

are not pre-existing in the participant, levels of performance are similar to those obtained 

in a Varied Mapping condition: the search process is said to be controlled, slow and 

strongly affected by display size. In light of this distinction, it is not surprising that Maddox 

et al. (2004) and Ell et al. (2017) found limited category learning for the II stimuli. In the 

present Experiments 2 and 3, the participants were given 7 blocks of training before being 

transferred to a CVM visual search task. Is this period long enough to have strong enough 

category representations? Additional experiments in which a single category is the target 

category for a given participant might be needed. 

Another important characteristic of the VSC task is that participants are not shown 

the target at the beginning of each trial: they were only shown a category label. While Yang 

and Zelinsky (2009) have shown that search can be driven by a categorically defined target, 

Vickery, King, and Jiang (2005) have shown that providing a target cue that does not 

exactly match the target is detrimental. Among all the conditions tested in Vickery et al., 

providing a verbal label was the worst type of target cue. Given the additional difficulty 

from the (1) limited training with the categories, (2) CVM training schedule, and (3) verbal 

target cues, it might not be all that surprising that the VSC task is difficult for participants. 

We tried to make the task easier by reducing both the overlap between the stimuli as well 

as the display size, but these differences were not sufficient to make the VSC task 

accessible with II stimuli. Given these constraints, participants may be more successful if 

an example category member is shown as a target cue at the beginning of each trial.  
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Theoretical implication 

The results in Experiments 2 and 3 suggest that while II categorization accuracy 

collapses with display size, the collapse is mostly seen by an increased proportion of false 

alarms in larger display sizes. This means that the complex polygon stimuli were likely 

treated as II stimuli. This conclusion is further supported by the fact that abstract polygons 

have been used in past visual search experiment as example stimuli that “could not be 

verbally labeled” (Vickery et al., 2005, p. 82). The possibility (or impossibility) of verbally 

describing a rule to separate categories has often been used as a heuristic to distinguish RB 

(verbal) from II (non-verbal) categories. However, more research is needed to confirm that 

complex polygons are treated as II categories. 

In Smith et al. (2005), the only factor that reduced the rate of collapse was 

increasing the within-category similarity, so this implies that reducing the variance of the 

II categories may reduce the false alarm rate in complex displays. The results in the VSC 

task also further support the hypothesis that RB and II learning produce different types of 

category representations that can be used and generalized differently. Similar to Hélie and 

Ashby (2012), it seems that the representation built from RB stimuli is more easily 

amenable to transfer in a new task context. One possible explanation is that in the case of 

RB stimuli, repetitive rule application may produce rule priming, resulting in better than 

expected result. Another possibility is that visual search performance relies on the 

feasibility of distinguishing between targets and distractors (Yang & Zelinsky, 2009), and 

Hélie et al. (2017) showed that RB categorization yields mental representations that contain 

between-category information (i.e., distinguishing features between the categories) 

whereas II categorization yields mental representations that contain within-category 
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information (i.e., what is common among category members). Hence, the mental 

representation learned with RB categorization may be more appropriate for the goal of 

distinguishing targets (one category) from distractors (the other category). Finally, it is also 

possible that, because the RB representation may be more digital (Hélie & Cousineau, 

2015), participants may be applying rules separately on each stimulus dimension (Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998) and focus the search on stimuli that have at 

least one dimensional value within the range of the target category (Treisman & Gelade, 

1980, Treisman & Sato, 1990, Wolfe, 1994, Wolfe & Gancarz, 1997). This strategy, which 

would facilitate and speed-up the search, would not be easily available when searching for 

II stimuli because II category representations may be more analog and not decompose the 

stimuli into separate dimensions, which would force the participant to search the whole 

display (Lefebvre, Cousineau, & Larochelle, 2008, Cousineau & Shiffrin, 2003). 

Limitations and future work 

Real-world categorization is often conducted in complex scenes and identifying 

factors that can help category learning in complex displays is critically important. In this 

article, we showed that category structure is an important factor to consider when 

categorizing stimuli from complex displays. However, one important limitation of the 

present experiment is that the RB categories were easier to learn than the II categories. One 

consequence of this is that the verbal label designating the target may have produced a 

noisier search template in the II condition. This may have biased participants to be more 

likely to accept distractors as potential targets (and produce false alarms). A replication 

with RB and II categories that are matched for difficulty would eliminate this possibility. 

Another limitation is that Smith et al. (2005) allowed for overlapping stimuli in the display. 
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While adding overlap is unlikely to make the task easier, it may affect target-present and 

target-absent trials differently. Hence, future work should focus on adding perceptual noise 

and occlusion to explore how perceptual ambiguity interacts with display size and category 

structure. 
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