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ABSTRACT 

The ability to focus on relevant information and ignore irrelevant information is a fundamental 

part of intelligent behavior. It not only allows faster acquisition of new tasks by reducing the size of the 

problem space but also allows for generalizations to novel stimuli. Task-switching, task-sets, and rule-set 

learning are all intertwined with this ability. There are many models that attempt to individually describe 

these cognitive abilities. However, there are few models that try to capture the breadth of these topics in a 

unified model and fewer still that do it while adhering to the biological constraints imposed by the 

findings from the field of neuroscience. Presented here is a comprehensive model of rule-set learning and 

selection that can capture the learning curve results, error-type data, and transfer effects found in rule-

learning studies while also replicating the reaction time data and various related effects of task-set and 

task-switching experiments. The model also factors in many disparate neurological findings, several of 

which are often disregarded by similar models. 
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1. INTRODUCTION 

The world is not random. The way something looks, feels, or smells can provide cues about its 

possible uses. An example of this would be the knowledge that the hard, inedible things inside of fruits 

are seeds. Objects that share the same features can often be used in the same ways. To keep up with the 

previous example, that knowledge about seeds could help a person identify the seeds of fruits that they 

had never encountered before so they could grow more. An intelligent agent can learn these consistencies 

and use them to build associations between an object’s observed properties and its behavior. These 

associations then allow the agent to predict the behavior of new stimuli that share relevant features with 

familiar stimuli. Relevant factors can also include previous actions taken and other broader contexts such 

as goals. These associations are called rules. They cover a broad spectrum of conditional relations that can 

be as specific as “Don’t eat red mushrooms with white spots” to as broad and as multifaceted as “Be 

polite as possible (and all the specific behaviors that entails) when interacting with customers”. The first 

example relates a specific stimulus feature to a specific action while the second specifies a whole range of 

different and otherwise unrelated actions to be associated with some internal classification of customer 

(versus, for instance, coworker). Within the actions that make up polite behavior additional rules specify 

when each action should be taken. A collection of rules that are mutually exclusive and thus only one rule 

in the collection can apply to any given stimulus is a rule-set.  

This article proposes a new biological theory of rule learning, switching, and selection. The new 

theory proposes that rules are regular working memory items. Working memory refers to cognitive 

system responsible for short-term storage and manipulation of information in real-time. Therefore, rule 

switching and selection should be similar to switching and selecting working memory items. The theory 

is implemented using a computational model that simulates a working memory circuit centered around the 

prefrontal cortex using spiking neurons. The model is validated by simulating several key phenomena in 

rule learning, switching, and selection such as transfer, priming, and representational effects as 

demonstrated by Collins and Frank (2013), van ’t Wout, Lavric, and Monsell (2015), and Badre, Kayser, 

and D’Esposito (2010) respectively. The remainder of this article is organized as follows. First, the 

relevant biological findings are described along with how the model incorporates them. Second, a 

selection of modern and classic effects are replicated and compared to human data from outside studies. 

The article concludes with a discussion of the implications of the proposed theory for future research in 

the neuroscience of rule learning, switching, and selection. 

1.1 Rules 

Rules can cover a wide variety of situations and circumstances. In the simplest case they directly 

indicate a response. These kinds of rules will be referred to as concrete rules and they directly select a 

response/category, usually through discrimination of one or more features of a stimulus. Concrete rules 

discriminate based on a single feature or a subset of features that is shared across a group of stimuli. For 

instance, the rule “Red stimuli are part of category B” will apply to all red stimuli regardless of shape. 

Concrete rules can also discriminate using multiple features of a stimulus, an example of this being 

“When I encounter a red traffic light while driving, I should press the brake pedal”. In this case, there are 

two relevant stimulus features and one state-based condition: 1. traffic signal, 2. red light, 3. while 

driving. These rules apply to multiple stimuli including stimuli that have never been encountered before, 

such as traffic lights in a new city. This means that when a novel stimulus is encountered, learning can 
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progress very rapidly or even be skipped altogether, so long as the rule-set is still valid (Hélie, Ell, 

Filoteo, & Maddox, 2015b).  

In contrast to concrete rules, the term abstract rule is used to define rules that do not assign 

specific responses to stimuli and instead are used to select a set of concrete rules from all of the possible 

sets of concrete rules that could be applied to the stimulus. If one were sorting coins, abstract rules would 

indicate whether to sort by size or by monetary value, while concrete rules would indicate which category 

each coin should belong to. Any stimulus features that are used by abstract rules rather than concrete rules 

are defined as cues. 

1.2 Physiological Basis for Rules 

The prefrontal cortex (PFC) is commonly understood as the location of high-order processes and 

cognitive control (Miller, Freedman, & Wallis, 2002). Rules, especially abstract rules, fall under this 

category and thus investigations into the location of rules should point towards the PFC. An fMRI study 

by Hélie, Roeder, and Ashby (2010) found that subjects that successfully learned the rule-sets of a rule-

based task exhibited corresponding activity in the PFC. In another fMRI experiment, Badre and Wagner 

(2004) used a task that required subjects to use rules when there was a mismatch between the primed 

response and the requested response. In these cases, fMRI results showed increased activity in the 

dorsolateral PFC (DLPFC). 

Non-fMRI studies also show that the PFC has a strong association with rules. Damage to the PFC 

is known to cause deficits in performance in the Wisconsin Card Sorting Task (WCST) (Bunge, 2004; 

Fuster, 2008), which relies on rule-sets and rule-set switching. In addition, Wallis and Miller (2003) 

found that rule-selective firing patterns were more prevalent in the DLPFC than stimulus-selective or 

response-selective firing patterns. Another study by O'Reilly, Noelle, Braver, & Cohen (2002) has shown 

impairments in the ability to switch between rule-sets in subjects with PFC lesions.  

In addition to rule representation, a large amount of research suggests that the lateral prefrontal 

cortex (LPFC) is associated with tasks that require abstract rule-sets and frequent rule-set switching. A 

few examples of such research include an fMRI study by Koechlin, Ody, & Kouneiher (2003) which 

found that anterior areas of the PFC were associated with greater levels of abstraction. Crone, Wendelken, 

Donohue, & Bunge (2005) found more activity in the LPFC when abstract rules were used, when a new 

rule-set is selected, and when the next rule-set that would be used was not predictable. Similarly, Zanolie, 

Van Leijenhorst, Rombouts, & Crone (2008) found increased activity in the dorsolateral PFC relative to 

medial areas during various rule-set related processes. The greatest increase in activity was found when 

the subject made an error due to interference from irrelevant rule-sets - meaning the association with the 

relevant rule-set needs to be reinforced. A smaller increase in LPFC activation occurred when a new rule-

set was selected through trial and error from a finite set of possible rule-sets. The smallest increase in 

activity occurred when the environment changed and the currently active rule-set was found to no longer 

be applicable. 

Similar results are found when the anterior PFC is not fully functional. In a study by Bunge and 

Zelazo (2006), structural MRI scans were used to track PFC development in young children. Over the 

same period of time their ability to use rules was evaluated through a set of behavioral tasks. Anterior 

areas of the PFC develop later than posterior areas and as they develop, children become more capable of 

using rules in complex ways. Children go from being able to use only a single rule to multiple rules 

within a single rule set, until finally being able to switch between multiple rule-sets. Badre, Hoffman, 
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Cooney, & D'Esposito, (2009) found that patients with lesions in the PFC that perform categorization 

tasks become impaired as contingencies are added to the task. The more anterior the lesion the more 

abstract the contingencies have to be before impairment. Other supporting evidence can be found in 

review articles by Badre (2008) and Buckner (2003). 

Together these findings suggest a hierarchical organization where concrete rule-sets are 

represented in posterior PFC regions and abstract rules are more anterior (Hélie et al., 2010; Nee, & 

D'Esposito, 2016; Zarr, & Brown, 2016; Badre, & Nee, 2018). This creates a tiered system where 

physical responses are coded in motor and premotor areas. Anterior to these motor-related areas is the 

posterior PFC where the concrete rule-sets that govern the selection of motor responses are represented. 

Anterior to that is the anterior PFC, location of the abstract rule-sets, which selects from among the 

concrete rule-sets. 

1.3 Physiological Constraints in the PFC 

The results of physiological studies of the PFC have also provided several constraints and 

qualities that will be used in constructing the new theory. 

When it comes to learning, dopamine is typically used as the reward signal in models, 

differentiating reward and punishment at the cellular level. Dopamine is known to modulate synaptic 

strength and its release is correlated with reward, making it a prime candidate for the reward signal. The 

problem with using this approach in the PFC is that the PFC lacks significant quantities of the protein 

DAT, which facilitates the rapid re-uptake of dopamine (Seamans & Robbins, 2010). Without this protein 

dopamine lingers in the synaptic space and thus cannot provide a signal with the temporal resolution that 

LTP and LTD would require for the synaptic modifications to be meaningful and improve task 

performance (Cass & Gerhardt, 1995; Hélie, Ell, & Ashby, 2015a). Izhikevich (2007a) suggested that 

even a temporally imprecise dopamine signal can facilitate learning. However, Izhikivich's experiments 

still used a dopamine reuptake rate 5 times faster than that of the PFC and, in his instrumental 

conditioning experiments, there was a 10 second delay between trials which did not solve the problem of 

credit assignment but instead avoided it. In addition, the instrumental conditioning task only presented a 

single repeated stimulus over blocks of 400 trials, which enormously streamlined learning. This is 

problematic, not just for using dopamine as a reward signal in the PFC, but for any theory that relies on 

dopamine signals in the PFC having trial-level temporal resolution. Part of the motivation for the 

proposed new theory is the incorporation of alternative methods of reward signaling and guiding synaptic 

learning. 

Space is also a limiting factor in the PFC. Selecting a response means considering both rule-sets 

and stimulus features. This creates a combinatorial space that might be too vast to be represented at the 

neuron level. Most representational methods require unreasonably large neuronal populations (Crawford, 

Gingerich, & Eliasmith 2016). Few brain areas are as large as the PFC, thus making this objection doubly 

problematic for theories that localize representational associations in other regions. While there are some 

neuron-level representational systems that could theoretically encode real-world quantities of information, 

these approaches have not yet attempted to tackle the problem of learning (Crawford et al. 2016). This 

being the case, alternatives to neuron-level representation were sought for use in the proposed new theory. 

1.4 Behavioral Investigations of Rule-Set Switching 
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Rules have naturally garnered substantial interest amongst cognitive psychologists as well. A 

particularly common area of investigation involving rule-sets is the study of task-switching (Stroop, 1935; 

Grant & Berg, 1948; Spector & Biederman, 1976; Sudevan & Taylor, 1987; Rogers, & Monsell, 1995; 

Hübner, Futterer, & Steinhauser, 2001; Logan & Bundesen, 2003; Monsell & Mizon, 2006; Koch & 

Allport, 2006). Since a rule-set is a collection of stimulus/response associations, switching tasks is akin to 

switching rule-sets. The rule-set for a color-naming task can have the same response assigned to a green 

frog and green tree while the plant or animal task set will have two different responses assigned to those 

stimuli. Subjects rarely make errors in these familiar tasks but the time it takes to make a response varies 

based on several factors such as: switching to a new task (A. T. Jersild, 1927; Stroop, 1935; Grant & 

Berg, 1948; Spector & Biederman, 1976; Sudevan & Taylor, 1987; Rogers, & Monsell, 1995; Hübner, 

Futterer, & Steinhauser, 2001; Logan & Bundesen, 2003; Monsell & Mizon, 2006; Koch & Allport, 

2006), early knowledge of the next task (Sudevan & Taylor 1987; Rogers, & Monsell, 1995; Hübner, 

Futterer, & Steinhauser, 2001; Logan & Bundesen, 2003; Monsell & Mizon, 2006), prior expectations 

about the next task (Stroop, 1935; Sudevan & Taylor, 1987; Alport, Styles, & Hsieh, 1995), and the 

number of rule-sets relevant to a given stimulus (Spector & Biederman, 1976; Rogers, & Monsell, 1995; 

Koch & Allport, 2006; van 't Wout et al. 2015). The general trends show that (1) switching to a new task, 

(2) using an uncommon task-set, or (3) using stimuli compatible with many task-sets, all increase reaction 

time. In contrast, (4) early knowledge of the next task, (5) using a common task-set, or (6) using stimuli 

compatible with only few task-sets, all decrease reaction time. Several of these findings, particularly 

switch costs and priming (1 and 4), suggest that there is a mechanism for maintaining rule-sets even when 

they are not currently in use. 

All of the above experiments use tasks and cues that are already familiar to the subjects. Of 

course, this familiarity had to be developed somehow. Investigations into rule learning utilize tasks such 

as the WSCT (Grant & Berg, 1948), the intradimensional/extradimensional task (O'Reilly et al., 2002), 

and the Same/Different task (Bamber, 1969). Previous results suggest that subjects use hierarchical rule-

sets to represent stimulus-response associations when there is no prior indication that rule-sets would be 

advantageous (Badre, Kayser, and D’Esposito 2010) and even when there is no advantage to using a 

hierarchical representation (Collins & Frank 2013). 

2. A NEW THEORY OF RULE-SET REPRESENTATION AND LEARNING 

2.1 Motivation for a New Theory 

The previous section identified four major goals for the new theory in addition to the central goal 

of describing rule-set learning and selection. (1) A means to solve or avoid combinatorial explosion when 

scaling up the feature space and number of rule-sets. (2) Use of dopamine in PFC areas limited to signals 

with coarse temporal resolution. (3) Some method for maintaining rule-sets across delay periods and 

between trials. (4) The establishment of a hierarchical organization that explains the differences between 

the anterior and posterior PFC. Adherence to these constraints can be found in various models of rule 

learning and switching, but there is no model that simultaneously conforms to all of them. 

For instance, O’Reilly et al. (2002) modeled the effects of PFC lesions on intra-dimensional vs. 

extra-dimensional target switching using a connectionist architecture. Subjects selected stimuli that 

contained a target feature and the feature could change intra-dimensionally (e.g., red to green in the 

‘color’ dimension) or extra-dimensionally (e.g., red to circle – from the ‘color’ dimension to the ‘shape’ 
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dimension). In the proposed terminology, an intra-dimensional shift would be a shift to a different 

stimulus response pair within a rule-set while an extra-dimensional shift would be a change in rule-set. 

Rule-sets and stimulus features were integrated using an intermediate neural layer which would explode 

in size if the model were to be scaled up to handle more stimuli, responses, and stimulus-response 

associations. Rules were hard-coded in the model and the rule-sets were learned using cortical dopamine 

as the reward signal. There was no maintenance of rule-sets across trials meaning that cross-trial effects, 

like switch costs, could not be replicated. On a positive note, the hierarchical organization of the PFC was 

recognized with orbital PFC encoding features and lateral PFC encoding rule-sets. 

A connectionist model by Ardid and Wang (2013) was used to simulate a number of task-switch 

findings including switch cost, congruency effect, task-response interaction, and single-neuron activity. 

Rule-sets were maintained across trials through various feedback loops within the PFC. Associations 

were predetermined as connections were only present between stimuli/cues and their associated 

categories/rule-sets. Plasticity was used to model switch costs by affecting the speed of responses. The 

intra-cortical feedback loops allowed for maintaining rule-sets across trials. However,  Ashby, Ell, 

Valentin, & Casale (2005) noted several findings suggesting that working memory maintenance is not 

solely supported by the PFC. Delayed response tasks show that several brain areas outside of the PFC 

exhibit delay related activity, and lesions and dysfunction in the basal ganglia and thalamus have been 

shown to impair working memory. Phenomena such as switch-costs, interference, and repetition effects 

are observed in both working memory and rule-based tasks. This suggests that rules and working memory 

share the same cerebral structures. Like many of the other models, the Ardid and Wang model is also 

subject to combinatorial explosion as the number of category cells required is equal to the product of the 

responses and the rule-sets. 

Another approach to rule-set maintenance is used in a model by Reynolds, Braver, Brown, & Van 

der Stigchel (2006) that simulated the residual switch-cost after priming. In the model, the rule-set is 

selected by the cue and stored in the PFC. Dopamine probabilistically maintains the rule-set until the 

stimulus is presented. The stimulus and rule-set (if maintained) form a compound representation which 

then determines a response. While this model does provide a mechanism for rule-set maintenance, it uses 

trial-level dopamine signals, so some other method must be found that adheres to all of the goals set for 

this theory. The model also suffers combinatorial explosion in the intermediate layer when scaled up and 

there is no location-based hierarchical organization. To avoid this issue of dopamine in the PFC, other 

models incorporate the cortico-basal ganglia (BG) loop and have the entirety of the reward-mediated 

learning take place in that brain area, where the presence of DAT allows dopamine to function as a 

temporally precise reward signal. In 2013 Collins and Frank conducted a two-phase experiment where 

subjects had to learn associations between two-dimensional stimuli and four responses. In the first phase 

there were two possible values in each of the two dimensions (2x2) and each feature combination was 

associated with a different response. In phase two new values were added in one dimension and the new 

combinations were assigned responses so that the subjects’ performance would differ based on the way 

the subject represented the environment. Collins and Frank simulated these two representations using a 

connectionist model in which rule-sets were associated with cues using a cortico-BG loop. Another 

cortico-BG loop associated responses with stimulus feature/rule-set pairs. The experimental results 

suggested that task representations that were not rule-based were uncommon to the point of being 

unidentifiable, suggesting that humans naturally organize information hierarchically. The incorporation of 

the BG does mean that dopamine can be used as the reward signal without issue, but the Collins and 

Frank model is still subject to combinatorial explosion. In fact, the issue is more severe because the 

intermediate layer is proposed to be in the striatum, a much smaller structure than the PFC. There is also 

no means of rule-set maintenance and the organization does not explain the dissociation between the 
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anterior and posterior PFC. That said, the rule selection architecture mirrors the response selection 

architecture. This repeating design is complementary to the hierarchical nature of the PFC. 

A solution to the combinatorial problem is provided by the Heterosynaptic Inhibitory Criterion 

Learning (HICL) model presented in Hélie et al. (2015b). The task used in that article asked subjects to 

categorize lines that varied continuously in two dimensions: length and orientation. The model used the 

computational cognitive neuroscience approach (Ashby & Hélie, 2011) with rule-sets encoded in the PFC 

through synaptic gating and rule-set switching governed by random-walk. A reward signal is provided by 

feedback sensitive cortical cells. The model reproduced learning curves as well as the effects of the 

different saliencies of the relevant dimension compared to the irrelevant dimension. Feature and rule-set 

integration was implemented at the synapse level, rather than the neuron level using pre-synaptic 

inhibition (Shepherd, 2004). Pre-synaptic inhibition involves an inhibitory synapse in which the post-

synaptic component is not the dendritic terminals of a post-synaptic cell as is common. Instead, the 

inhibition is received at the axon terminals of the pre-synaptic cell and affects only the specific synapse 

that the terminal is part of by blocking neurotransmitter release. Pre-synaptic inhibition acts like a gate, 

allowing cells that represent stimulus features to selectively activate only a subset of the cells that they 

connect to depending on the active rule-set. This model also avoids the issue with using dopamine in the 

PFC by using activity of reward-sensitive neurons as the reward signal. However, the focus of the Hélie et 

al. model was on (intra-dimensional) criterion learning within the PFC and no biological mechanism was 

proposed to account for rule-set switching, selection, or maintenance. 

 

2.2 Assembling the Features of the New Theory 

The reviewed material sets up a framework for integrating previous work and the proposal of a 

new biological theory of rule switching and selection. The theory states that the PFC is hierarchically 

organized with abstract rules located in anterior regions and concrete rules located closer to the premotor 

cortex which codes physical responses. Rule-sets are stored in working memory and maintained via a 

positive feedback loop with the thalamus. Inhibition of the thalamus removes the active rule-set from 

working memory. Rule-sets are implemented as synapse-level gating allowing selection of rewarded 

responses while blocking punished responses. The reward signal is provided by cortical cells sensitive to 

reward and punishment. As is standard in the models we have examined, responses are selected through 

the interaction of stimulus features and rule-sets in the posterior PFC. The rule-set selection mechanism in 

anterior PFC mirrors the architecture of the response selection, reflecting the observed hierarchy of the 

PFC and incorporating the iterative design philosophy seen in the Collins and Frank model. Integration of 

the rule-set and stimulus features is achieved using pre-synaptic inhibition. Each rule-set delivers a 

different pattern of inhibitory gating to signals from the features to the responses. This avoids the problem 

of combinatorial explosion by encoding the interaction of features and rule-sets in the pattern of synaptic 

gating rather than through an intermediate neural layer that grows proportionally to the product of the 

rule-sets and the responses. The inhibitory gates are plastic and can be strengthened or weakened based 

upon external feedback. This feedback is implemented using feedback sensitive cortical cells. These 

feedback cells are based on an fMRI experiment by O'Doherty, Kringelbach, Rolls, Hornak, & Andrews 

(2001) which found areas of the PFC that became more active with increasing reward and less active with 

increasing punishment. In other areas of the PFC the opposite behavior was observed. The activity of 

these cells is theorized to influence Hebbian learning so as to reinforce rewarded behavior and avoid 

punishing behavior. The term “pre-synaptic” is used extensively within the topic of neural connections 
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and so, in an effort to avoid ambiguity, the term “non-somatic” shall be used from here on to refer to these 

connections that do not directly affect the spiking of the post-synaptic cell. 

The Reynolds et al. model and the Ardid and 

Wang model used connectionist approaches to rule-

set maintenance. However,  The Reynolds et al. 

model’s reliance on dopamine means that it does not 

meet all criteria for the proposed framework. Instead, 

inspiration is taken from FROST (Ashby et al. 2005), 

a model of working memory maintenance designed 

to reproduce the delayed-response task, which does 

not involve rule learning or task switching. In this 

task, the subject (typically a monkey) must 

remember where a reward is hidden until it is 

permitted to obtain it. FROST stores the reward 

location in the PFC and maintains that information 

through connection loop with the thalamus (Figure 

1). The maintenance is disabled by default and 

ceases when the model no longer has a need to maintain the information. In this regard, the FROST model 

behaves counter to what the task-switching experiments would suggest. Behavioral findings suggest that 

rule-sets must maintain some degree of activity after the removal of the cue and into the next trial. Since 

this interference is detrimental, the maintenance mechanism is likely to be active by default. To make the 

thalamic maintenance loop enabled by default the new theory incorporates the exterior segment of the 

globus pallidus (GPe). The GPe inhibits the internal segment of the globus pallidus (GPi) and, unlike the 

striatum, is naturally active and does not require external excitation to generate an inhibitory signal. With 

this the thalamus is freed and the maintenance loop is enabled by default. However, the old rule-sets are 

not maintained indefinitely so there must also be a way to halt the maintenance loop. Results published by 

Rushworth, Hadland, Paus, & Sipila (2002) and by Dove, Pollmann, Schubert, Wiggins, & von Cramon 

(2000) indicate that the pre-supplementary motor area (pre-SMA) is active when subjects engage in cue-

mediated task switching. Rushworth et al. (2002) also shows that temporary lesioning of the pre-SMA 

negatively affects performance only in trials involving a task-switch. The pre-SMA excites the 

subthalamic nucleus (Aron, Behrens, Smith, Frank, & Poldrack, 2007), which excites the GPi. The GPi 

overcomes the inhibition from the GPe and inhibits the thalamus, disrupting the cycle of excitatory input 

between the thalamus and the PFC cells that represent rule-sets. 

3. THE MODEL 

Figure 1 - The FROST model architecture showing the pathway 
through the basal ganglia and the parallel maintenance loops 
between the PFC and the thalamus. From Ashby et al. (2005). 
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Figure 2 – Overview and connectivity diagram of the proposed theory. 

A model of the proposed theory should represent varying numbers of stimulus dimensions, 

stimulus features within those dimensions, responses, cues, and rule-sets. Stimulus features are 

represented by PFC stimulus cells, cues by PFC cue cells, responses by PMC response cells, and rule-sets 

by PFC rule-set cells (figure 2). It should be pointed out that, while this model learns to associate features 

of the cue dimension with rule-sets, the distinction between the cue dimension and stimulus dimension(s) 

are defined beforehand. The model is already assumed to “know” which stimulus dimensions can be used 

in abstract rules and which can be used in concrete rules. There is no mechanism in this model for 

discovering a representational structure for a task. Stimulus dimensions are represented in the pattern of 

connections from the rule-set cells to the stimulus-response synapses. Rule-set cells strongly inhibit 

stimulus cells outside of their target dimension while weakly and plasticly inhibiting stimulus cells in that 

dimension. Depending on the task there may be more rule-set cells than the number of rule-sets necessary 

for perfect performance and there may be multiple rule-set cells on the same dimension. Each rule-set cell 

has an associated thalamic cell that connects to it. In the case where a rule-set needs to use more than one 

stimulus dimension, each possible combination of the features in those dimensions is represented by a 

single stimulus cell.  

3.1 Cortical Pyramidal cells 

The cells’ membrane potential is modeled using equations (1) and (2), parameterized to model a 

cortical pyramidal cell (Izhikevich, 2007b): 

 𝑉𝑎(𝑡 + 1) = 𝑉𝑎(𝑡) + [0.7[𝑉𝑎(𝑡) + 60][𝑉𝑎(𝑡) + 40] − 𝑈𝑎(𝑡) + 𝐸𝑎(𝑡) − 𝐼𝑎(𝑡) + 𝜀(𝑡)] 100⁄  (1) 

 𝑈𝑎(𝑡 + 1) = 𝑈𝑎(𝑡) + 0.03[−2[𝑉𝑎(𝑡) + 60] − 𝑈𝑎(𝑡)] (2) 

 

     

 

where Va(t) is the membrane potential (in mV) of cell a at time t, Ua(t) is the value of the recovery 

variable (a dimensionless representation of the slow ionic current) of cell a at time t, Ea(t) is the excitatory 

(glutamate) input to cell a at time t, and Ia(t) is the inhibitory (GABA) input to cell a at time t. εa(t) is the 
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noise in cell a at time t and is drawn at each time-step from a Gaussian distribution with a mean of 0 and a 

standard deviation of 200. The noise and both inputs are represented as mA of injected current. If 

equation (1) would result in a Va(t) greater than 35 then a is said to have spiked and the following 

adjustments are made: Va(t) is set to -50mV and Ua(t) is increased by 100. Additionally, the spike time t is 

concatenated onto the end of Sa, the list of the times at which cell a spiked. Each cell also generates 

output at each time step according to equations (3) and (4). 

 𝑂𝐺𝑙𝑢𝑡𝑎(𝑡) = ∑ [
𝑡 − 𝑠

60
𝑒
1−[

𝑡−𝑠
60
]
]
+

𝑠∈𝑆𝑎

 (3) 

 𝑂𝐺𝐴𝐵𝐴𝑎(𝑡) = ∑ [
𝑡 − 𝑠

30
𝑒
1−[

𝑡−𝑠
30
]
]
+

𝑠∈𝑆𝑎

 
(4) 

 

 

 

where OGlut
a(t) is the glutamate output of cell a at time t and OGABA

a(t) is the GABA output of cell 

a at time t. This is an abstraction of how neurons work in the brain. Most biological cells release the same 

neurotransmitter at every one of their synapses. Within the model, some pyramidal cells have both 

excitatory and inhibitory outgoing connections. These cells are stand-ins for groups of cells that include 

excitatory pyramidal cells and inhibitory interneurons.  f(t)+ equals f(t) when f(t) ≥ 0, and 0 when f(t) < 0. 

Glutamate and GABA release are modeled with separate equations because the release and re-uptake of 

GABA can be faster than that of glutamate (Hélie et al. 2015b). The outputs of cells are transmitted to 

other cells through connections. Excitatory connections are denoted in equations and the text with a solid 

arrow and inhibitory connections with a hollow arrow,
𝑠
→ and 

𝑠
⇒ respectively. Standard cell-to-cell 

connections are indicated with the letter “s” below the arrow: 
𝑠
→ or 

𝑠
⇒ and non-somatic connections with an 

“ns”: 
𝑛𝑠
→ or 

𝑛𝑠
⇒. The effect of connections on the E and I terms of the voltage equation are described by 

equations (5), (6), and (7): 

 𝐸𝑎(𝑡) =∑𝑤(𝑏)
𝑠
→(𝑎) [𝑂

𝐺𝑙𝑢𝑡
𝑏(𝑡) + 𝑃(𝑏)

𝑠
→(𝑎)(𝑡)]

+

𝑏𝜖𝐶

 (5) 

 𝐼𝑎(𝑡) =∑𝑤(𝑏)
𝑠
⇒(𝑎) [𝑂

𝐺𝐴𝐵𝐴
𝑏(𝑡) + 𝑃(𝑏)

𝑠
⇒(𝑎) (𝑡)]

+

𝑏𝜖𝐶

 (6) 

 𝑃𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) =∑𝑂𝐺𝑙𝑢𝑡 ∙ 𝑤(𝑐)
𝑛𝑠
→ (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)

𝑐∈𝐶

−∑𝑂𝐺𝐴𝐵𝐴 ∙ 𝑤(𝑐)
𝑛𝑠
⇒ (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)

𝑐∈𝐶

 (7) 

 

 

 

 

where 𝑤(𝑏)
𝑠
→(𝑎) is the weight of an excitatory connection from cell a to cell b and 𝑤

(𝑎)
𝑛𝑠
→ [(𝑏)

𝑠
→(𝑐)]

 is the 

weight of an excitatory non-somatic connection from cell a to the excitatory synapse from cell b to cell c. 

Some of these non-somatic connections, like those from the feedback cells, are likely to be 

located on the axons of the stimulus cells because one weight applies to multiple outgoing synapses of the 

post-synaptic cell. Other non-somatic connections, like those from the rule-set or premotor cortex (PMC) 
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cells in the model, have varying effects across the synapses of the post-synaptic cell. Biologically, the 

non-somatic connections that cause these varying effects could target either the axon near the terminals or 

individual synapses themselves.  Within the model, those non-somatic connections targeting individual 

synapses correspond to pre-synaptic inhibition. Whatever the true biological implementation, they can be 

modeled in the same way because the only effect that the location of the synapse has is different travel 

times of the action potential. Unlike synapses, which take time in the new model, axon propagation is 

simplified as instantaneous, so synapse location is irrelevant in this new model. 

If there is no connection of a given type between two model components, the corresponding w 

term can be treated as though it were 0. Within the model each connection has its own mean value for its 

weight term. When the model is initialized the starting value of the term is drawn from the uniform 

distribution of all numbers within ±1% of the corresponding mean unless the postsynaptic cell is an 

accumulator (as explained next).  

3.2 Non-Cortical Cells 

While most of the cells in the model are parameterized as Cortical Pyramidal cells, the model also 

makes use of thalamic and globus pallidus cells. All cells use equations (3) through (7). However, each 

cell type has unique patterns of firing and responds differently to excitation. Therefore, in order to 

properly model these types of cells, different equations must be used for V and U and the effect of an 

action potential must be parameterized differently. Fortunately, Izhikevich (2007b) had already calculated 

parameters for all the neuron types used in the model. In cases where a parameter had a value that has no 

effect on the rest of the equation, such as a factor having a value of 1.0, it is intentionally included in the 

equations to make the relation to the general form clearer. 

The voltage update equations for thalamic cells is: 

 𝑉𝑎(𝑡 + 1) = 𝑉𝑎(𝑡) + [1.6[𝑉𝑎(𝑡) + 60][𝑉𝑎(𝑡) + 50] − 𝑈𝑎(𝑡) + 𝐸𝑎(𝑡) − 𝐼𝑎(𝑡)]/200 (8) 

 𝑈𝑎(𝑡 + 1) = {
𝑈𝑎(𝑡) + 0.01[15[𝑉𝑎(𝑡) + 65] − 𝑈𝑎(𝑡)] 𝑉(𝑡) ≤ −65

𝑈𝑎(𝑡) + 0.01[−𝑈𝑎(𝑡)] 𝑒𝑙𝑠𝑒
 (9) 

 

     

 

where the parameters are the same as in the pyramidal cell (Izhikevich, 2007b).  The two update 

equations for (9) model the two firing modes of thalamic neurons: bursting (top) and tonic (bottom). If 

Va(t) is greater than [35 + 0.1Ua(t)] then the cell has undergone an action potential. Va(t) is set to [-60 – 

0.1 Ua(t)]mV and Ua(t) is increased by 10.  

The voltage update equations for globus pallidus cells is: 

 𝑉𝑎(𝑡 + 1) = 𝑉𝑎(𝑡) + [1[𝑉𝑎(𝑡) + 55][𝑉𝑎(𝑡) + 40] + 140 − 𝑈𝑎(𝑡) + 𝐸𝑎(𝑡) − 𝐼𝑎(𝑡)]/20 (10) 

 𝑈𝑎(𝑡 + 1) = 𝑈𝑎(𝑡) + 0.15[8[𝑉𝑎(𝑡) + 55] − 𝑈𝑎(𝑡)] (11) 
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where the parameters are the same as in the pyramidal cell. If Va(t) is greater than 25 then the cell has 

undergone an action potential, Va(t) is set to -50mV, and Ua(t) is increased by 200. These cells 

spontaneously fire unless they are inhibited by some other source. This is modeled by the addition of the 

constant factor of 140 in equation (10). 

3.4 Response Selection Module 

The model is composed of two 

major modules: a response selection module 

and a rule-set selection module. In the 

response selection module, an array of 

pyramidal cells represent the stimulus 

features (Figure 3). If the features are 

discrete, each feature can be represented by 

a single cell. Stimulus features that vary 

continuously can be represented by cells 

with receptive fields that determine how 

much excitation each cell receives from a 

specific value in that continuum. None of 

the simulations included in this article used 

continuous stimulus values so no specific 

receptive field formulae is discussed (but see 

Hélie et al., 2015b). Cells representing 

discrete features receive a 500mA input 

current when the feature they represent is 

present. Stimulus cells are part of the PFC 

and thus the features that they represent are 

highly preprocessed (Freedman, 

Riesenhuber, Poggio, & Miller, 2003). 

While they can represent something as 

simple as the color or orientation of a 

stimulus, complex ideas such as a compound 

3D shape can be represented if the representation is informative to response selection.  

To present a stimulus to the model, a 500mA current is injected into each stimulus cell and cue 

cell that represent the features of the stimulus. The stimulus cells excite the pyramidal response cells in 

the PMC. The PMC cells represent different responses or stimulus categories. They are not meant to 

correspond to specific movements or action plans although in an experimental setting the two are often 

equivalent. Because responses are mutually exclusive, each PMC cell sends non-somatic inhibition to the 

incoming excitatory connections of every other PMC cell, creating winner-take-all behavior (Rumelhart, 

& Zipser, 1985). This design should scale well as Rutishauser, Douglas, and Slotine (2010) showed that 

WTA components tend to stabilize large networks. This feature, when combined with the avoidance of 

combinatorial explosion through pre-synaptic inhibition, should allow this model to scale up to real-world 

problem sizes. 

Rules are represented by pyramidal cells in the PFC. Each of the rule-set cells non-somatically 

inhibit connections from stimulus cells to PMC cells. Each rule-set cell has a stimulus dimension 

Figure 3 - The connectivity diagram of the response selection module. 
Non-somatic connections are denoted using a gray field over the 
somatic connection that receives the non-somatic input. A dotted line 
separates stimulus neurons (circles) of different dimensions.  
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associated with it. Connections from stimulus cells that represent features outside of this dimension are 

inhibited statically and severely. Within the associated dimension the inhibition is weaker and can change. 

This means that when a rule-set cell is active, the model is focusing on the associated stimulus dimension 

and ignoring the other dimensions. A running sum of each PMC cell’s OGlut term is tracked over the 

course of each trial. The response made corresponds to the first PMC cell who’s sum reaches the response 

threshold (see Table A1). Response cells are conceptualized as initiating a physical response, so once a 

response has been made it cannot be changed and no other response can be made for that trial. The 

feedback cells become active once the model makes a response. If the response would elicit positive 

feedback, the positive feedback cell receives an input of 500mA for the remainder of the trial. Otherwise, 

the negative feedback cell receives that input instead. This simulates the behavior of the cell populations 

observed by O'Doherty et al. (2001) discussed in section 2.2. The positive feedback cell non-somatically 

excites all stimulus cell-to-PMC connections while the negative feedback cell inhibits those connections 

(see Figure 5). At the end of a trial the strength of the plastic connections from the rule-set cells is based 

on the following equation: 

 𝑤
(𝑎)

𝑛𝑠
⇒ [(𝑏)

𝑠
→(𝑐)]

[𝑛 + 1] = 𝑤
(𝑎)

𝑛𝑠
⇒ [(𝑏)

𝑠
→(𝑐)]

𝑛 (12.1) 

 
−𝜂1 ∙∑𝑂𝐺𝐴𝐵𝐴𝑎(𝑡)

𝑡

∙ [∑[𝑂𝐺𝑙𝑢𝑡𝑏(𝑡) + 𝑃(𝑏)
𝑠
→(𝑐)(𝑡)]

+

𝑡

− 𝜃1]

+

∙ [𝑤𝑚𝑎𝑥 − 𝑤(𝑎)
𝑛𝑠
⇒ [(𝑏)

𝑠
→(𝑐)]

𝑛]

+ 𝜂2 ∙∑𝑂𝐺𝐴𝐵𝐴𝑎(𝑡)

𝑡

∙ [𝜃1 −∑[𝑂𝐺𝑙𝑢𝑡𝑏(𝑡) + 𝑃(𝑏)
𝑠
→(𝑐)(𝑡)]

+

𝑡

]

+

∙ [∑[𝑂𝐺𝑙𝑢𝑡𝑏(𝑡) + 𝑃(𝑏)
𝑠
→(𝑐)(𝑡)]

+

𝑡

− 𝜃2]

+

∙ [𝑤
(𝑎)

𝑛𝑠
⇒ [(𝑏)

𝑠
→(𝑐)]

𝑛 − 𝑤𝑚𝑖𝑛] 

(12.2) 

 

(12.3) 

 

 

 

Equation (12) uses variables as they were previously defined where applicable, and all the new 

parameter values for equation (12) are specific to the task. However, it is important to note that θ1 is 

always greater than θ2. Segment (12.2) (starting with η1) models the changes in the non-somatic synapse 

that reduce the inhibition from the rule-set cell. Reduced inhibition means that, under this rule, the range 

of stimulus values represented by the stimulus cell postsynaptic to the rule-set cell are associated with the 

response of PMC cell postsynaptic to the stimulus cell. This change should only occur when all three of 

the following conditions are met: the stimulus cell is active, the PMC cell is active, and the model 

positive feedback cell is active. Only when all three of these conditions are met is ∑ [𝑂𝐺𝑙𝑢𝑡𝑏(𝑡) +𝑡

𝑃(𝑏)
𝑠
→(𝑐)(𝑡)]

+
, the input to the PMC cell, able to reach a value greater than θ1, otherwise the entirety of 

(12.2) will be zero and can be ignored. This causes the association between the current stimulus and the 

chosen response to strengthen when that combination creates positive feedback. Segment (12.3) (starting 

with η2) models what happens when only two of the three conditions are met. In this case, the connection 

is strengthened and the inhibitory signal becomes stronger, thus disassociating the stimulus and response. 

If more than one of the conditions are absent the PMC input does not reach θ2, thus both (12.2) and (12.3) 

solve to zero and the connection strength does not change. 

3.5 Cued Rule-set Selection 
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 The architecture of the rule-set 

selection module mirrors that of the 

response selection module with cue 

features in place of stimulus features and 

concrete rule-set cells instead of response 

cells (Figure 4). An abstract rule-set cell 

gates the connections between the cue 

cells and the concrete rule-set cells in the 

same way the concrete rule-set cells gate 

the connections between stimulus features 

and responses. Theoretically, there could 

be multiple abstract rule-sets. However, 

none of the tasks used to validate the 

model incorporate multiple abstract rule-

sets. Thus, a 500mA current is injected 

into the abstract rule cell through the 

entirety of each trial. The outgoing 

connections from the abstract rule-set cell 

are used to gate the connections between 

the cue cells and the concrete rule-set 

cells. Synaptic plasticity and feedback for 

these connections operate the same way as 

in the response selection component, albeit 

with potentially different parameters in 

equation (12). The concrete rule-set cells 

are the same are the connection point between the two modules and appear in figures 2 and 3. Concrete 

rule-sets cells selected by the rule-set selection module gate stimulus-response associations in the 

response selection module. Once a rule-set is selected a positive feedback loop with the thalamus keeps it 

active. In the model thalamic cells are paired with rule-set cells, resulting in one thalamic cell for each 

rule-set cell. Paired cells excite each other creating positive feedback loops. The activity of this loop 

persists across trials and only ceases when inhibition arrives from a cell representing the GPi. As 

previously described, cells in the globus pallidus spontaneously fire at high rates. The GPi cell is therefore 

inhibited by a cell representing the GPe. Without the GPe, the GPi would be perpetually active and the 

thalamus would be in a constant state of inhibition. The GPi receives a 200mA excitatory current for 

500ms at the start of any trial where a task is likely (based on findings from Monsell & Mizon, 2006). 

This excitation comes from the pre-SMA via the subthalamic nucleus (Aron et al., 2007). This excitatory 

input is the only way for the GPi to overcome the inhibitory influence of the GPe.  

It is unusual for a model that includes the GPe and GPi to not include the striatum as well. The 

striatum receives input from most cortical areas and selectively inhibits both the GPi (direct pathway) and 

GPe (indirect pathway) (Alexander, DeLong, and Strick 1986). These connections can give some insight 

into the role of the striatum regarding working memory maintenance. In the model the direct pathway 

enables maintenance while the indirect pathway prevents it. In tandem these pathways could dynamically 

constrain the items, such as task-sets, that can enter working memory, preventing distractions. This kind 

of functionality does not factor into the current battery of experiments and thus the striatum is omitted 

from this implementation of the model. However, this omission was done for simplicity of 

implementation only; other applications of the proposed framework could readily include the striatum. 

Figure 4 - The connectivity diagram of the response selection model 
segment. Non-somatic connections are denoted using a gray field over 
the somatic connection that receives the non-somatic input. 
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Representational structures are determined by the task conditions. An experimenter must adjust 

the structure of the model to fit the desired representation. Although there is an outside chance that the 

model could function when every dimension has representation in both the cues cells and the stimulus 

cells, it was not designed with this implementation in mind, nor has it been tested using such an 

implementation. Any experimental task that involves the subject determining which stimulus dimensions 

to use in abstract vs. concrete rules require multiple implementations of this model: one for each 

representational structure. In each of these implementations the cue dimensions are assumed to be 

identified beforehand, whether from some outside instruction or an internal decision that is made by 

cognitive systems beyond the model’s scope. 

4 – SIMULATIONS  

In this section we used java implementations of the model to replicate three experimental results 

from different articles in an effort to validate the new theory. These findings cover the learning 

advantages of different representations, transfer effects, and priming effects. General spike train results 

from an archetypical trial are presented in Figure 5. All parameter values for each simulation are listed in 

the Appendix. 

4.1 Simulation 1 – Badre, Kayser, and D’Esposito (2010) 

The first test for the model is if it will perform better when able to use multiple rule-sets than 

when only able to use one. Badre, Kayser, and D’Esposito (2010) tested subjects in two conditions: the 

hierarchical condition, in which using multiple rule-sets would have been beneficial, and the flat 

condition, in which it would not. Subjects in the flat condition learned slower and had a lower final 

accuracy than subjects in the hierarchical condition. The model was tested on these two tasks to see if it 

would also perform better in the hierarchical condition.   

Badre, Kayser and D’Esposito (2010) asked subjects to learn associations between 3 responses 

and 18 stimuli which varied across 3 dimensions (with 3x3x2 discrete values). In one condition the 

associations were “flat” with no pattern to them and no abstract rule-set that would aid learning. In the 

other condition, the associations were “hierarchical” – the dimension with two values could be treated like 

a cue, signaling which of the other two dimensions were irrelevant for that trial. Subjects were not 

Figure 5 – Spike trains of the most active neurons from each group during a trial from the Badre, Kayser, and D’esposito 
(2010) simulation (section 4.1). The abstract rule cell was active throughout the trial, the cue and stimulus cells activated 
when the stimulus was presented, and the PMC and concrete rule-set cells activated shortly after. In this trial the model 
made an error and the effect of the inhibition from the feedback cell can be seen in the spike train of the PMC neuron after 
a response is made at 1200ms. 
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informed that any hierarchy existed, they were simply told to learn the correct response for each stimulus. 

Despite this obfuscation, subjects in the hierarchical condition learned faster and achieved better 

performance by the end of the experiment compared to subjects in the flat condition showing that subjects 

try to apply rule-sets to situations even when there is no prior indication that rule-sets would be useful. 

 

4.1.1 Task 

In Badre, Kayser, and D’Esposito (2010), subjects categorized 18 stimuli into 3 response 

categories. The stimuli were pictures of computer-generated 3D shapes and varied in three dimensions: 

the shape itself, the angle at which the shape was viewed, and the color of the border. Subjects saw each 

stimulus 20 times for a total of 360 trials. In the hierarchical condition, the stimuli with red borders can be 

accurately categorized solely by using shape while the stimuli with blue borders can be correctly 

categorized by using orientation. This means that subjects could represent the stimuli hierarchically with 

the color of the border acting as a cue to use either a rule-set on shape or a rule-set on orientation. In the 

flat condition, there is no exploitable structure to the stimulus-response pairings and all three dimensions 

must be used to correctly categorize each stimulus. 

4.1.2 Human Data 

Subjects were given no 

information about any organization in 

the stimulus-response associations yet 

subjects in the hierarchal condition 

learned more quickly and achieved a 

higher final accuracy than subjects in 

the flat condition (Figure 6). There are 

two reasons for this improvement in 

performance. The first is that there are 

fewer associations to learn when using a 

hierarchical representation: 2 border 

colors to 2 rule-sets, 3 shapes to 3 

responses, and 3 orientations to 3 

responses for a total of 8 associations. In the flat representation each of the 18 combinations of border 

color, shape, and orientation needs its own association to a response. Secondly, in the flat condition there 

is overlap in the relevant dimensions. Stimuli with different responses share features with each other, 

which causes interference. While the same is technically true in the hierarchical condition, this overlap 

only occurs in the dimension designated irrelevant by the cue. Once the subject has learned to use the cue 

to ignore one of the dimensions, they are able to disregard misleading interference from the irrelevant 

dimension. In the flat condition, there are no irrelevant dimensions and therefore subjects suffer disruptive 

interference. 

4.1.3 Task-Specific Model Parameters 

As stated in the model description, problem representation is defined by the architecture of the 

model. The hierarchical condition was simulated using separate sets of cells for each stimulus dimension 

(each set with three possible values) whereas the flat condition merged the representation of the cue 

dimension with those of the two stimulus dimensions and represents them as a single composite 

dimension with 18 values (see Table A1). Although there was only one rule-set cell in the flat condition, 

Figure 6 - Human results from Badre, Kayser, and D’Esposito’s (2010). 
Graphs show the learning curve estimates and 90% confidence interval of 
the most typical subject for each condition. Graphs taken from Badre 
Kayser, and D’Esposito’s (2010). 
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and therefore no need to clear the old rule-set, the GPi received input as it did in the hierarchical condition 

to maximize equivalence between the two simulations. In each condition, a run consisted of 20 repetitions 

of each of the 18 possible stimuli presented in a random order. 

4.1.4 Model Results 

Each condition was run 1000 times and 

the results of each trial were averaged (Figure 

7). As a reminder Bardre, Kayser, and 

D’Espositio used learning curve estimates for 

their figures (presented in Figure 6), not the 

means as used in Figure 7. The model was able 

to learn the associations in both conditions but 

with markedly different learning curves. In the 

flat condition, accuracy rose linearly and 

reached an accuracy of approximately 0.7 by 

trial 300. In the Hierarchical condition accuracy 

rose much more steeply until trial 180 and then 

slowly approached an accuracy of 0.9. To 

calculate the r2 of the model, subject data was 

estimated from the graphs in Figure 6 at trial increments of 30 (0, 30, 60… 360). The results yield an r2 of 

0.966. The failure of the model to reach the perfect accuracy achieved by the representative subject in the 

hierarchical condition is not a universal failing. Over 70% of experimental runs reached an average 

accuracy of 0.9 or greater by trial 330.  

4.1.5 Discussion 

The model demonstrated the ability to develop associations between stimuli/response pairs and 

cue/rule-set pairs concurrently. This allowed the model to learn correct responses faster when using a 

hierarchical representation compared to a flat representation. In the human data for this condition, the 

accuracy started to asymptote at this point while the model’s performance continued to rise linearly. An 

explanatory hypothesis for this difference is that the 18 unique combinations of features caused human 

subjects to suffer from interference effects. Although the simulation treats the images as 18 unique 

stimuli, each image shared many features with other images and not all of these other images had the 

same response association. This would cause interference in selecting the correct response. The model 

does not account for this kind of interference and so the asymptote does not appear in the model’s results. 

This hypothesis could be easily tested by comparing learning rates of subjects learning the flat stimuli 

with the learning rate of subjects learning 18 stimuli that have no features in common. 

4.2 Simulation 2 – Collins and Frank 2013 

The model is not restricted to using only one rule-set for a dimension. Multiple rule-sets can exist 

governing the same dimension. Neither are rule-sets limited to only using a single cue. Different cue 

features can be associated with the same rule-set. This allows learning to transfer into new contexts. In an 

experiment presented in Collins & Frank (2013), subjects categorized colored shapes. Correct 

categorizations were assigned such that if subjects used a particular task representation learning would 

transfer when subjects learned a second set of stimuli. Two implementations of the model were tested, 

Figure 7 - Model data from the task used in Badre, Kayser, and 
D’Espositio (2010). Error bars show 95% confidence interval. 
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one that used the representation conducive to learning transfer and an alternate representation that had 

been commonly used by subjects. (see Section 1.4 for more) 

4.2.1 Task 

In the Collins and Frank task, subjects were trained to associate a stimulus that varied in two 

dimensions: shape and color, with 4 responses. There were 4 different colors and 2 different shapes. 

Subjects were trained over two phases. In the first phase two out of the four colors were used resulting in 

4 stimuli, red triangles, yellow triangles, red circles, and yellow circles. Each of these stimuli was 

associated with a different response. If a hierarchical representation of these associations is used, there is 

no environmental bias toward using shapes as a cues or colors as a cues. In the second phase there is a 

shift in color – the presented shapes are now blue or green instead of red or yellow. The category 

associations for blue shapes are the same as for yellow shapes (so yellow triangles and blue triangles 

share a response) but the correct responses for green shapes follow a new pattern.  

The shift during phase 2 caused a dissociation between subjects that used color as a cue and 

subjects that used shape as a cue. If subjects used shape as a cue, there should have been no difference in 

the rate at which stimulus-response associations are learned for blue stimuli vs. green stimuli since 

associations for both needed to be added to the rule-sets cued by shape. If instead subjects used color as a 

cue, they would have been able to associate blue with the same rule-set used for yellow stimuli. By doing 

this they took advantage of concrete rules that had already been learned. Green stimuli, on the other hand, 

required a new set of rules and thus a new rule-set, all of which needed to be learned. In this case, the 

acquisition of the response pairings for the blue stimuli was expected to occur faster than for the green 

stimuli.  

4.2.2 Human Data 

For each subject, Collins and Frank 

calculated two reaction-time switch-costs, one 

for switches in stimulus color and one for 

switches in stimulus shape. They divided 

subjects into three groups based on the difference 

between these switch costs. Group 1 was made 

up of the top third of subjects with the highest 

color-switch cost minus shape-shift cost. Group 3 

was made up of the bottom third of subjects with 

the lowest color-switch cost minus shape-shift 

cost. Group 2 was made of the remaining third. 

Collins and Frank then examined the learning 

curves and error patterns across these groups 

(Figure 8). They looked at the types of errors 

made, whether subjects neglected the stimulus’ 

shape when choosing a response, the stimulus’ 

color, or both (Figure 8 insets). Group 1’s 

learning curve and error patterns matched the 

predicted pattern for using color as a cue and 

while Group 3’s learning curve and error patterns 

matched the predicted pattern for using shape as a cue. For subjects in Group 3, green and blue stimuli 

were learned at statistically similar rates and the types of errors made did not significantly differ between 

Figure 8 - Human results for Group 1Group 3.Error bars show 
standard error.Inserts show green errors minus blue errors by 
error type: errors made due to neglecting color (NC), errors 
made due to neglecting shape (NS), and errors made due to 
neglecting both color and shape (NA). Figures adapted from 
Collins and Frank (2013). 

Blue 
Green 

Blue 
Green 
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stimuli of those two colors. In Group 1, blue stimuli were learned more quickly than green stimuli and 

there were significantly more ‘neglect color’ errors made with green stimuli than with blue. Since Group 

2 represented subjects whose task representations were harder to infer and who may have used alternative 

representations, their results are not considered.  

 

4.2.3 Task-Specific Model Parameters 

Group 1 was simulated by using color as a cue while Group 3 was simulated by using shape as a 

cue. For both group simulations, a run consisted of 15 instances of each of the four stimuli that were 

colored red or yellow, presented in random order. This was followed by 15 instances of each of the four 

stimuli that were colored blue or green, again presented in random order. 

 

4.2.4 Model Results 

 The mean results for the 

simulations across 1000 repetitions 

of each group are shown in Figure 9. 

Simulation of Group 3 (Shape Cue 

condition) achieved a maximum 

performance accuracy of 0.845 for 

stimuli of both colors. The errors 

made in this condition are also the 

same across all colors and error 

types (see insets of Figure 9). In the 

simulation of Group 1 (Color Cue 

condition), the blue stimuli reached 

an accuracy of 0.807 and the green 

stimuli reached an accuracy of 

0.749. The r2 of the model results was 0.937. While errors caused by neglecting shape or neglecting both 

color and shape were the same between the two colors, there were far more neglect color errors made 

with the green stimuli than with the blue stimuli.  

 

4.2.5 Discussion  

The model learned the task well and showed itself capable of concurrently learning multiple rule-

sets on the same dimension. The faster acquisition of blue stimuli vs. green stimuli when color was used 

as the cue shows that the model can transfer previously learned rule-sets into new environments instead of 

having to relearn them. Lastly, the model made more errors by neglecting color when categorizing green 

stimuli compared to blue stimuli in the color cue condition. These are the same error patterns that were 

found in human data so it can be concluded that the model was, in some ways at least, using a method 

similar to that of human subjects. 

The model has shown that it can successfully learn associations between stimuli and responses 

while simultaneously learning associations between cues and rule-sets. This has been demonstrated in a 

Figure 9 - Model performance in the Collins and Frank task. The graphs show 
average accuracy and the inserts show green errors minus blue errors by error 
type: errors made due to neglecting color (NC), errors made due to neglecting 
shape (NS), and errors made due to neglecting both color and shape (NA). Error 
bars show 95% confidence interval 
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few different situations while reproducing several key advantages of using rule-sets. Next, the model was 

tested on its ability to account for reaction-time data in priming experiments.  

 

4.3 Simulation 3 – van ’t Wout, Lavric, and Monsell 2015 

Response time can be reduced through priming as shown in Sudevan & Taylor (1987). van ‘t 

Wout, et al. (2015) expanded upon this by manipulating the number of potential rule-sets that subjects 

might have to use and examining the interaction with priming. The effect of the number of rule-sets was 

minimal in all cases but their data presents a clear example of the effect of priming and thus is a good 

source of human data with which to test the model. In this experiment, the cue was presented in advance 

of the stimulus with a long or short interval between the two. With more time to process the cue, subjects 

responded more quickly.  

4.3.1 Task 

In the task used in van ‘t Wout et al. (2015), subjects were 

presented with stimuli featuring stylized animals or trees. Both 

animals and trees varied in five dimensions (e.g. head size, fruit 

shape, etc.). Each dimension had only two possible values, which 

corresponded to one of the two possible responses.  Subjects were 

given a verbal cue prior to the presentation of the stimulus that 

indicated which feature should guide the response. Subjects were 

trained for an extended period before data collection to minimize 

the effect of learning on the results. Once the extensive training 

was complete, subjects were tested by varying two factors. The 

first factor was that the relevant dimension was either limited to 

one of three dimensions or could be any one of the five possible 

dimensions. Subjects in the three-rule-set condition were aware 

that they were in this condition and understood the effect of the 

condition on the task. The second factor varied the interval 

between the onset of the verbal cue and the presentation of the 

stimulus (Cue-Stimulus Interval - CSI) between either 100ms or 

1300ms. These two factors were fully crossed. 

4.3.2 Human Data 

The mean response time for each condition was plotted above (Figure 10). The most relevant 

effect for the current model is the effect of manipulating CSI. Subjects that were given longer CSIs 

responded about 450ms after the stimulus was presented. Subjects that saw the shorter, control CSI 

responded after around 700ms. There is also a small effect of rule-set number: a larger pool of tasks slows 

reaction time slightly. However, this effect was not found to be significant in either condition. Only 

reaction times from correct responses were used. 

4.3.3 Task-Specific Model Parameters 

Figure 10 - Human data from van ‘t Wout, 
Lavric, and Monsell (2015). Reproduced 
using figures from van ‘t Wout, Lavric, and 
Monsell (2015). 
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The subjects were fully aware of and well versed in the associations between cues/stimuli and 

rule-sets/responses. As such, the weights of the non-somatic inhibition from the abstract and concrete 

rule-set cells were set to the extreme values for the task and learning was disabled. Although van ‘t Wout 

et al. described the cue as presented 100ms or 1300ms before the stimulus, remember that it was a verbal 

cue. Speech has a time component and it arguably makes more sense to present the cue to the model at the 

off-set of the cue rather than the on-set. van ‘t Wout et al. stated that all of the verbal cues last 350ms and 

so in the model the cue was presented 950ms before the stimulus presentation or 250ms afterward. In the 

case where the cue was presented after the stimulus, the presentation of the stimulus to the model was 

delayed to coincide with the presentation of the cue due to limited attentional resources of the subjects 

and their knowledge that processing the stimulus would be of no 

use without knowing which dimension was relevant.   

A run consisted of 576 trials that used only 3 possible 

relevant dimensions (6 of each possible stimulus and relevant 

dimension combination) with short CSI, 576 trials that used only 3 

possible relevant dimensions with long CSI, 640 trials that used all 

5 possible relevant dimensions (4 of each possible stimulus and 

relevant dimension combination) with short CSI, and 640 trials that 

all used 5 possible relevant with long CSI. The mean response time 

for correct trials was calculated for each condition using 1000 runs. 

4.3.4 Model Results  

The model reproduced the main effect of longer mean 

response time in short CSI conditions. The magnitude of the 

difference, a 250ms increase is reproduced as well (Figure 11). 

However, the model results show a longer response time than the 

human subjects show for both conditions. Although the model is 

slower than the human subjects, the pattern of results is well 

reproduced with an r2 of 0.99. The insignificant effect of more 

possible rule-sets slightly increasing reaction time was reproduced as well, which is only notable because 

the model was not designed to reproduce it. 

4.3.5 Discussion 

The relevant effects are well reproduced by the model. However, for both conditions the results 

show a longer response time than the human subjects. A possible explanation is that well practiced tasks 

have lower response thresholds. The observant reader will note that the response threshold was lowered 

for this simulation. However, any further reduction of the threshold increased the rate of errors due to 

activity in the PMC neurons occurring before a concrete rule-set is chosen. Future versions of this model 

could include an ‘undecided’ state that prevents activation of the PMC cells until a concrete rule-set has 

been chosen (see section 5.2). 

5. General Discussion 

The goal of this research was to create a model that only used realistic neurons to simulate rule 

learning and rule-set switching via pre-synaptic inhibition. Care was taken to avoid contradicting current 

neurological findings in the design of the model. The results show that the model can account for a 

Figure 11 - Model data for the van ‘t Wout, 
Lavric, and Monsell (2015) task. The 95% 
confidence interval is too small to be seen 
with error bars. 
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variety of data in both learning and task-switching paradigms. However, the most important contribution 

of a model is making new testable predictions. 

5.1 Implications and predictions 

The most important predictions made by this model follow from the role of the basal ganglia and 

the effect of storing task-sets in working memory. For example, if salient, attention-grabbing distractions 

were occasionally paired with stimuli presented in a task-switching experiment the model predicts that the 

distractor would enter working memory, ousting the task-set. When the subject refocuses on the task, the 

task-set would have to be re-acquired. This would increase reaction time but moreover there would be no 

reaction time difference between switch trials and stay trials. 

Another, more speculative prediction involves the basal ganglia. Both the direct pathway and the 

indirect pathway originate in the striatum. In the indirect pathway the GPe is inhibited, freeing the GPi to 

inhibit the thalamus. In the direct pathway the striatum inhibits the GPi, freeing the thalamus. Combining 

this with the model’s hypothesis that the thalamus maintains working memory creates the prediction that 

both pathways work together to constrain which items can enter WM. Signals along the indirect pathway 

send general inhibition to the thalamus, making most items impossible to maintain in WM. At the same 

time, the direct pathway is activated, sending more localized signals, protecting a few select WM items 

allowing them to be maintained. Testing this hypothesis would be challenging but one could try 

conducting an fMRI or single cell recording study comparing indirect pathway activation in a familiar 

task or environment with activation in a wholly unfamiliar task or environment.  

5.2 Extensions, Improvements, and Future Work 

The model was shown to be robust and versatile, but it is by no means perfect. Tasks like the 

WCST and intradimensional/extradimensional task involve rule-set switching based on task performance 

instead of cues. Even the HICL model (Hélie et al., 2015b) was designed to perform un-cued rule-set 

switching. Yet this model does not include a mechanism for cue-less rule-set switching. Some of the 

pieces are already in place though. Un-cued task switching requires that the switches be infrequent, 

making the thalamic maintenance mechanism of the model very useful. When a rule-set switch occurs, a 

reset signal can be sent by, for instance, a performance monitoring system. The biggest challenge is to 

prevent the abandoned rule-set from being immediately reselected. Future work should focus on 

calibrating this system. 

A more ambitious way to add performance monitoring would be to incorporate a comprehensive 

model of memory. Not only would this implement performance monitoring, it would also allow a more 

meaningful exploration of cross-task interference in task-switching and priming studies. A confidence 

mechanic could also be useful should these phenomena be revisited.  

Another potential improvement to the model is the addition of a concrete rule-set cell (or similar) 

that represents the lack of a selected rule-set. Currently when a winning rule-set has yet to be selected 

none of the rule-set cells are active enough to substantially gate the stimulus/response connections. The 

addition of a “no rule-set” cell allows that cell to send blanket inhibition to every stimulus/response 

connection in the absence of a winning rule-set cell.  
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A variation of the Badre, Kayser, and D’Esposito (2010) task where the cue is presented after the 

stimulus would be interesting in several ways. Will subjects develop the same hierarchical task 

representation with border as the cue or could the shape and orientation be the cues and the border color 

be the stimulus feature? In such a case, would the cue dimensions be separated resulting in two 

simultaneously active rule-sets or would the dimensions be combined resulting in 9 different rules? 

Would priming effects occur? Exploring these possibilities would also guide the development of the 

model.  

Finally, another direction would be to replicate single-cell recording data. Ideally little of the 

design of the model would change but some capabilities may need to be scaled back to mirror the 

cognitive limitations of animal subjects, but the use of spiking neurons in the model means that the model 

is already able to produce spike trains. Hence, this extension should be pursued in the near future. 
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Appendix 

There are several parameters that are dependent on the task that the model is to perform. 

Supplemental Table A1 lists the parameters used in each experimental task condition. “Out stim” refers to 

all stimulus cells that code features that are outside the dimension associated with the concrete rule-set 

cell. There are two plastic non-somatic connections: (𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ ((𝑖𝑛 𝑠𝑡𝑖𝑚)

𝑠
→ (𝑃𝑀𝐶)) and 

(𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ ((𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→ (𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)). Parameters for the learning rule for these 

connections can be found in Supplemental Table A2. In the plastic connection denoted by 

(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ ((𝑖𝑛 𝑠𝑡𝑖𝑚)

𝑠
→ (𝑃𝑀𝐶))  “in stim” refers to those stimulus cells that represent features 

in the dimension of the rule-set associated with the concrete rule-set cell. In this way, it is the complement 

of “out stim” described above. Response time = 0 indicates the point in the model’s runtime where, if a 

response is made at that time step, the response time would be recorded as 0. This corresponds to the 

moment at which the physical stimulus is presented. 

Table A1 

Parameter values associated with different task representations across the various simulations. The 

parameters that were not part of the experimental procedure were found using grid-search. 

 
Badre, Kayser, & 

D’Esposito 
Collins & Frank 

van ’t Wout, 

Lavric, & Monsell 

 Hierarchical  Flat Color Cue Shape Cue Control Primed 

𝑤(𝑠𝑡𝑖𝑚)
𝑠
→(𝑃𝑀𝐶) 55 55 55 55 50 50 

𝑤(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)
𝑠
→(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒) 25 25 25 25 25 25 

𝑤(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑠
→(𝑡ℎ𝑎𝑙𝑎𝑚𝑢𝑠) 40 40 40 40 40 40 

𝑤(𝑡ℎ𝑎𝑙𝑎𝑚𝑢𝑠)
𝑠
→(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒) 40 40 40 40 40 40 

𝑤(𝐺𝑃𝑖)
𝑠
⇒(𝑡ℎ𝑎𝑙𝑎𝑚𝑢𝑠) 100 100 100 100 100 100 

𝑤(𝐺𝑃𝑒)
𝑠
⇒(𝐺𝑃𝑖) 40 40 40 40 40 40 

𝑤
(𝑃𝑀𝐶)

𝑛𝑠
⇒ ((𝑠𝑡𝑖𝑚)

𝑠
→(𝑃𝑀𝐶))

 3 3 3 3 3 3 

𝑤
(𝑝𝑜𝑠)

𝑛𝑠
→ ((𝑠𝑡𝑖𝑚)

𝑠
→(𝑃𝑀𝐶))

 0.8 0.8 1.0 1.0 0 0 

𝑤
(𝑛𝑒𝑔)

𝑛𝑠
⇒ ((𝑠𝑡𝑖𝑚)

𝑠
→(𝑃𝑀𝐶))

 0.4 0.4 0.4 0.4 0 0 
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𝑤 (𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ 

(
(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→

(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
)

 

6 6 6 6 6 6 

𝑤
(𝑝𝑜𝑠)

𝑛𝑠
→ (
(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→

(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
)
 

0.8 0.8 1.0 1.0 0 0 

𝑤
(𝑛𝑒𝑔)

𝑛𝑠
⇒ (
(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→

(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
)
 

0.4 0.4 0.4 0.4 0 0 

𝑤 (𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ 

((𝑜𝑢𝑡 𝑠𝑡𝑖𝑚)
𝑠
→(𝑃𝑀𝐶))

 
6 6 6 6 6 6 

Stimulus dimensions 2 1 1 1 5 5 

Features per dimension 3 18 2 4 2 2 

Cues / Rule-set cells 2 1 4 2 3 & 5 3 & 5 

Responses 3 3 4 4 2 2 

Stimulus onset 500ms 500ms 500ms 500ms 1750ms 1400ms 

Cue onset 500ms 500ms 500ms 500ms 1750ms 450ms 

Response Threshold 7000 7000 7000 7000 5000 5000 

Trial length 2800ms 2800ms 2800ms 2800ms 3500ms 3500ms 

Response time = 0 500ms 500ms 500ms 500ms 1400ms 1400ms 

 

Table A2 

Parameters for the model’s plastic connections 𝑤
(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)

𝑛𝑠
⇒ ((𝑖𝑛 𝑠𝑡𝑖𝑚)

𝑠
→(𝑃𝑀𝐶))

 and 

𝑤
(𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑟𝑢𝑙𝑒)

𝑛𝑠
⇒ ((𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒))

 across the various simulations. These parameters were found 

using grid-search. 

 Badre, Kayser, & D’Esposito Collins & Frank van ’t Wout, Lavric, & Monsell 

𝑤 (𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ 

((𝑖𝑛 𝑠𝑡𝑖𝑚)
𝑠
→(𝑃𝑀𝐶))

 
Hierarchical  Flat - - 

η1 1.4·10-9 3.0·10-10 1.4·10-9 0 

η2 1.8·10-13 1.3·10-15 1.2·10-13 0 

θ1 15000 34000 15000 10000 

θ2 6000 2000 6000 2000 

wmax 4 4 4 4 

wmin 0 0 0 0 

winit 0.7 0.7 0.7 Correct: 0; All others: 4 

𝑤 (𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑟𝑢𝑙𝑒)
𝑛𝑠
⇒ 

(
(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑢𝑒)

𝑠
→

(𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑢𝑙𝑒)
)

 

    

η1 4.0·10-10 0 3.0·10-9 0 

η2 2.5·10-14 0 1.6·10-13 0 

θ1 20000 15000 25000 35000 

θ2 8000 5000 13000 2000 

wmax 4 4 4 4 

wmin 0 0 0 0 

winit 0.7 0.0 0.7 Correct: 0; All others: 4 

 


