
Cognitive, Affective, & Behavioral Neuroscience
in press

The impact of training methodology and representation on
rule–based categorization: An fMRI study

Sébastien Hélie, Farzin Shamloo
Department of Psychological Sciences, Purdue University

Hanru Zhang
Department of Psychology, Colorado State University

Shawn W. Ell
Department of Psychology, University of Maine

Hélie, Shamloo, & Ell (2017) showed that regular classification learning instructions (A/B)
promote between–category knowledge in rule–based categorization whereas conceptual learn-
ing instructions (YES/NO) promote learning within–category knowledge with the same cate-
gories. Here we explore how these tasks affect brain activity using fMRI. Participants learned
two sets of two categories. Computational models were fit to the behavioral data to deter-
mine the type of knowledge learned by each participant. fMRI contrasts were computed to
compare BOLD signal between the tasks and between the types of knowledge. The results
show that participants in the YES/NO task had more activity in the pre–supplementary motor
area, prefrontal cortex, and the angular/supramarginal gyrus. These brain areas are related to
working memory and part of the dorsal attention network, which showed increased task–based
functional connectivity with the medial temporal lobes. In contrast, participants in the A/B
task had more activity in the thalamus and caudate. These results suggest that participants in
the YES/NO task used bivalent rules and may have treated each contextual question as a sep-
arate task, switching task each time the question changed. Activity in the A/B condition was
more consistent with participants applying direct Stimulus → Response rules. With regards
to knowledge representation, there was a large shared network of brain areas, but participants
learning between–category information showed additional posterior parietal activity, which
may be related to the inhibition of incorrect motor programs.
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Introduction

Categorical representations are the building blocks of
decision–making from the most routine to the most novel
contexts (Hélie & Ashby, 2012). Not surprisingly, the study
of the processes underlying the development of the repre-
sentations necessary for such decision making has been the
focus of much research (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Maddox & Ashby, 1993; Markman & Ross,
2003; J. D. Smith & Minda, 2002). It has been argued
that category representations can be broadly classified as
containing within–category information (what is common to
category members, e.g., humans generally have one head)
or between–category information (what is different between
members of different categories, e.g., dogs generally have
more legs than humans). The above examples show an im-
portant difference between within– and between–category
representations. Within–category representations directly
describe the category members (e.g., how many heads hu-
mans have) without any reference to other categories (e.g.,
it says nothing about dogs). In contrast, between–category
representations do not directly qualify category members.

They compare members from one category to members of
other categories. Here, dogs have more legs than humans,
but the rule does not say how many legs dogs (or humans)
have. Hélie, Ell, and colleagues showed that participants
typically learn within–category information in concept train-
ing (YES/NO) and inference learning tasks (Ell, Smith, Per-
alta, & Hélie, 2017; Ell, Smith, Deng, & Hélie, 2020), but
that classification training (A/B) with rule–based categories
biases participants towards learning between–category infor-
mation (Hélie, Shamloo, & Ell, 2017).

The goal of this article is to explore the brain circuits
underlying the learning of these two tasks (YES/NO, A/B)
and types of representations (within–category, between–
category). Towards this goal, we replicated Experiment 1
from Hélie, Shamloo, and Ell (2017) using a functional Mag-
netic Resonance Imaging (fMRI) rapid event–related design.
Specifically, participants learned two sets of two categories
during training and were subsequently tested on a novel cat-
egorization problem using the training categories. The stim-
uli were sine–wave gratings varying in bar width (frequency)
and orientation (counterclockwise rotation from horizontal).
The categories are shown in Figure 1 and each symbol rep-
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Figure 1. Stimuli used in the Experiment. The x-axis cor-
responds to the width of the bars (frequency) and the y-axis
corresponds to the rotation angle of the bars (counterclock-
wise from horizontal). Symbols denote different categories.
The mean stimulus of each category is shown as an example.

resents the coordinates used to draw one stimulus (i.e., one
specific frequency and rotation angle). Different symbols are
used to represent the four categories. During training, partic-
ipants learned to distinguish stimuli in the ’+’ category (ar-
bitrary labelled “A”) from those in the ’◦’ category (arbitrary
labelled “B”). They also learned to distinguish stimuli in the
’*’ category (arbitrary labelled “C”) from those in the ’�’
category (arbitrary labelled “D”). At test, participants were
asked to distinguish between stimuli in the “B” and “C” cat-
egories (shown as ’◦’ and ’*’ in the figure). Critically, partic-
ipants were already familiar with the test categories but had
never been asked to contrast these two categories. If partic-
ipants learned within–category representations during train-
ing, then this knowledge should seemlessly transfer to the
test phase (because participants are already familiar with the
categories). However, if the participants learned between–
category representations during training, then they should not
be able to apply their knowledge in the test phase (because
the test comparison is new).

Hélie, Shamloo, and Ell (2017) trained participants in the
above task using one of two training methodologies. In A/B
training, participants were asked in each training trial a spe-
cific categorization question, e.g., “A or B?”. In this case,
participants knew that the stimulus on the screen was either
a member of the “A” or “B” category and needed to push
a button corresponding to the correct category label. Other
possible questions were “C or D?” (also at training) and “B
or C?” (at test). In the YES/NO training condition, partic-
ipants saw a different type of categorization questions. An
example question might be “Is this an A?”. The participant’s
task was to press either the “yes” or “no” button depending
on how they categorized the stimulus on the screen. Similar
questions were presented for categories “B”, “C”, and “D”.
The results in Hélie, Shamloo, and Ell (2017) showed that
A/B training resulted in a bias toward between–category rep-

resentations (with high transfer accuracy cost at test) whereas
YES/NO training resulted in a bias toward within–category
representations (with low transfer accuracy cost at test).

Hypotheses

Hélie, Roeder, and Ashby (2010) showed that rule–based
learning with similar sine–wave gratings involves a brain
circuit centered around the ventrolateral prefrontal cortex
(PFC) partly relying on working memory (WM) (Ashby, Ell,
Valentin, & Casale, 2005). However, the data from Hélie
et al. were collected using an A/B paradigm only, and no
attempt was made to identify the type of category represen-
tations learned. As a result, they likely included both partici-
pants learning rules containing within–category information
and participants learning rules containing between–category
information. In the current study, some participants were
trained using a A/B task while others were trained using a
YES/NO task. In addition to comparing brain activity be-
tween these two categorization tasks, computational models
were fit to the behavioral data to identify the type of category
representations learned by each participant (Hélie, Sham-
loo, & Ell, 2017). The fit of the computational models to
each individual participant were used as weights to explore
blood oxygen–level dependent (BOLD) response of partici-
pants learning within– or between–category representation,
regardless of training task. We hypothesized that the differ-
ence between the types of learning task (A/B vs. YES/NO)
and rule content (between– vs. within–category information)
would show different circuits reflecting either the task de-
mands or knowledge content.

Main task–based hypotheses. With regards to tasks,
Hélie et al. (2010) found that when learning rules in an A/B
task with multiple decision bounds (as used in the present
experiment), categorization accuracy was linked to brain ac-
itivty in the medial temporal lobes (MTL), anterior cingu-
late cortex, and thalamus. Several clusters of BOLD acitivty
were also found in the PFC. These rules are univalent: the
same stimulus should always produce the same button press
(Bunge, 2004). We expect to reproduce this result in the A/B
condition. However, because the YES/NO task does not in-
clude a consistent Stimulus → Response mapping, we ex-
pect the rules learned in this task to be bivalent, meaning that
a given stimulus requires a different button press depending
on context. Hence, the former should be represented more
rostrally in the PFC (Badre, Kayser, & D’Esposito, 2010).
Also, after the stimulus category has been determined in the
YES/NO task one still needs to disentangle the motor re-
sponses and decide which button to press. This should pro-
duce activity in the pre–supplementary motor area (preSMA)
because participants need to “pay attention to their inten-
tions” (Nachev, Kennard, & Husain, 2008, p. 858).

The explanation above suggests another interesting pos-
sibility. If participants in the YES/NO task are using the
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question as a context for response selection, then it is pos-
sible that each question is considered its own task, meaning
that only rules related to the question currently on screen
are maintained in WM and used to respond (Fleischer &
Hélie, 2020; Schneider & Logan, 2014). If this is the case,
we expect to detect brain activity generally related to task–
switching for this condition, namely the frontal pole (Wang
et al., 2010) and the supramarginal gyrus (Philipp, Weidner,
Koch, & Fink, 2013).

Exploratory hypotheses: Model–based training.
With regards to knowledge representation, Hélie, Ell,
Filoteo, and Maddox (2015) argued that processing in the
PFC could emulate decision bounds and that categorization
rules could be treated as regular WM items (Fleischer &
Hélie, 2020). As a result, we predict activity in the PFC,
temporal lobe, and posterior parietal cortex for participants
learning between–category representations (Ashby et al.,
2005). Next, Zeithamova, Maddox, and Schnyer (2008)
showed that concept learning produced activity in the
superior parietal lobule and inferior lateral occipital cortex
(see their Table 2). However, the task in Zeithamova et
al. differed from the current task in important ways. Most
importantly, the stimuli were cartoon animals composed of
10 binary dimensions. In contrast, the present experiment
used sine–wave gratings with two continuous dimensions.
We nevertheless expect to reproduce their results and find
activity in the superior parietal lobule and inferior lateral
occipital cortex for participants learning within–category
representations.

Exploratory hypotheses: Task–based training func-
tional connectivity. Hélie et al. (2010) found that initial
category learning of rule–based categories was associated
with MTL activity. Likewise, Nomura and Reber (2008) also
found that rule–based categorization was associated with in-
creased MTL activity. Several other category learning stud-
ies not assuming rule–based representations also found ac-
tivity in the MTL (e.g., Bowman & Zeithamova, 2018; Zei-
thamova et al., 2019). However, Hélie et al. did not find any
cluster of BOLD signal in the MTL: activity in the MTL
only reached statistical significance in region of interest anal-
yses with a more relaxed statistical significance threshold
(because of a reduced need for mutiple–testing correction).
The region of interest analysis in Hélie et al. was inspired
by COVIS (Ashby et al., 1998; Ashby & Valentin, 2017),
which predicts that the MTL is part of a network linked to
hypothesis–testing. The present experiment includes more
participants than previous work by Hélie et al., which should
increase statistical power and improve detection. However,
the stimuli are simple (sine–wave gratings) and the MTL has
been shown to play a more prominent role with stimuli that
include complex spatial features (Lee, Yeung, & Barense,
2012). This suggests that even with a larger sample size
MTL activity may go undetected in the present experiment.

For these reasons, we also performed a psychophysiological
interaction (PPI) analysis with the MTL as a seed to explore
task–related functional connectivity with the MTL. While
this analysis is exploratory, we predicted that learning cate-
gorization rules would increase functional connectivity with
brain areas related to WM, and in particular with the dor-
sal attention network (Majerus, Péters, Bouffier, Cowan, &
Phillips, 2017; Vossel, Geng, & Fink, 2014). In addition,
increased functional connectivity with the cognitive control
network should be more pronounced in the YES/NO task, as
this task requires using context dependent rules.

Exploratory hypotheses: Task–based test. The exper-
iment also included a test phase where accuracy feedback
was removed and a new category comparison was introduced
(i.e., “B” vs. “C”). Behavioral data from the new cate-
gory comparison is necessary to fit the models and identify
the type of representation learned by the participants (i.e.,
within–category vs. between–category; see Hélie, Sham-
loo, & Ell, 2017). However, it is possible that removing the
feedback may affect the way participants process the tasks
(e.g., a change in strategy) and also affect BOLD response.
While we do not expect that participants would process the
test block differently, brain activity during the test block was
analyzed.

Materials and methods

This experiment reproduced Experiment 1 from Hélie,
Shamloo, and Ell (2017) in a MRI scanner.

Participants

Forty–three students from Purdue University were re-
cruited to participate in this experiment (17 males). Twenty
participants were randomly assigned to the YES/NO condi-
tion while the remaining 23 participants were assigned to the
A/B condition. One participant in the A/B condition did not
complete the experiment because of claustrophobia. Each
participant received $30 as compensation for their time. All
procedures were approved by the Purdue University Biomed-
ical Institutional Review Board.

Stimuli and apparatus

The stimuli were circular sine–wave gratings of constant
contrast and size backprojected on a mirror attached to a head
coil using a Hyperion HD 1080p projector (1, 920 × 1, 080
resolution). Each stimulus was defined in a 2D space by
a set of points ( f requency, orientation) where f requency
(bar width) was calculated in cycles per degree (cpd), and
orientation (counterclockwise rotation from horizontal) was
calculated in radians. The stimuli were generated with Mat-
lab using the Psychophysics toolbox (Brainard, 1997) and
occupied an approximate visual angle of 5◦. In each trial, a
single stimulus was presented in the center of the screen.
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The categories used for both training conditions are shown
in Figure 1. There were four separate categories gener-
ated using bivariate normal distributions with the random-
ization technique (Ashby & Gott, 1988). The categories
were arbitrarily labeled with letters A–D from bottom to top.
Only the mean orientation differed across categories, so that
µA = (1.9, 0.30), µB = (1.9, 0.67), µC = (1.9, 1.03), and
µD = (1.9, 1.40). The covariance matrix for all categories
was Σ = ( 0.44 0

0 0.01 ). This yielded stimuli that varied in ori-
entation from 10◦ to 90◦ (counterclockwise from horizon-
tal) and in bar width (frequency) between 0.2 and 3.85 cpd.
Note that the categories lie on a continuum of orientation,
and that the width of the bars was irrelevant. Specifically,
these categories can be near–perfectly separated by three lin-
ear boundaries corresponding to the following verbal rule:
near–horizontal stimuli are “A”, slightly steeper stimuli are
“B”, much steeper stimuli are “C”, and near vertical stim-
uli are “D”. A single set of 600 stimuli was generated from
these distributions, and the stimulus set was linearly trans-
formed so that the sample mean and covariance of each cat-
egory matched the generative distributions. The resulting set
of stimuli is shown in Figure 1. The stimulus set was inde-
pendently shuffled for each participant.

Stimulus presentation, feedback, and response record-
ing were controlled and acquired using Matlab. Responses
were produced by using two MR–compatible Celeritas but-
ton boxes (one in each hand, with three buttons on each box).
In the A/B condition, the following question was displayed
in the top–middle of the screen in black font “X or Y?” where
X and Y were replaced by category labels informing the par-
ticipants that they should respond using one of these two cat-
egories in this trial. The left button in the left hand corre-
sponded to an “A” response, the right button in the left hand
corresponded to the “B” response, the left button in the right
hand corresponded to the “C” response, and the right but-
ton in the right hand corresponded to the “D” response. The
middle button in each hand was not used.

In the YES/NO condition, the following question was dis-
played in the top–middle of the screen in black font: “Is this
a ’X’?”, where X was replaced by a category label inform-
ing the participants of the target category for this trial. All
buttons in the left hand corresponded to the “YES” response
while all buttons in the right hand corresponded to the “NO”
response.

In both conditions, visual feedback was given for a correct
(a green checkmark) or incorrect (a big red “X”) response. If
a response was too late, participants saw a big black dot. Dur-
ing the whole experiment, the screen background was gray.

Study design

The experiment was composed of 6 blocks of 100 trials
(for a total of 600 trials), and each stimulus was seen only
once. Participants were told they were taking part in a cate-

gorization experiment and that they had to assign each stim-
ulus into either an “A”, “B”, “C”, or “D” category. The par-
ticipants were told that there would be a test phase at the end
of the experiment where they would no longer be receiving
feedback. No further detail was given about the test phase at
this point.

The first 5 blocks were training blocks and the participants
were trained to separate “A” stimuli from “B” stimuli and
“C” stimuli from “D” stimuli. Specifically, only the ques-
tions “A or B?” and “C or D?” were used in the A/B condi-
tion. Likewise, if the question was “Is this an ’A’?” in the
YES/NO condition, correct “NO” responses were from the
“B” category, and if the question was “Is this a ’B’?”, correct
“NO” responses were from the “A” category (and the same
logic applied to the “C” and “D” categories). All categories
and questions were equally likely. After the training phase,
the participants were told that they were now beginning the
test phase, and that they should use the categories learned
during the training phase to respond in the test phase. Instead
of feedback, participants saw a large texture pattern on the
screen. The texture was neutral, always the same, and partic-
ipants were told that the texture was non–informative.1 Note
that the training and test stimulus sets were non–overlapping
and randomly selected for each participant.

The rapid–event related design had three types of events:
(1) stimulus presentation, (2) feedback presentation, and (3)
blank screen. The timing of a trial [scaled in repetition
time (TR), 1 TR = 720 ms] went as follows: (1) a response–
terminated stimulus was presented for 3 TR. If the partici-
pant responded in less than 3 TR, the stimulus disappeared
and was replaced by a blank screen for the remainder of the 3
TR. Next, feedback was presented for 1 TR. The number of
blank TR between stimulus and feedback was jittered using
a truncated geometric distribution (p = 0.5; max TR = 3)
(Ashby, 2019), and the number of blank TR between feed-
back and the next stimulus was also jittered using a truncated
geometric distribution (p = 0.5; max TR = 5). When more
than 1 blank TR was presented between feedback on trial t
and the stimulus on trial t+1, a fixation cross was shown for 1
TR immediately before stimulus presentation (replacing the
last blank TR, so that there was always at least 1 blank TR
between the feedback and the next stimulus). The crosshair
was shown on an average of 48% of the trials. A schematic
showing a trial in each condition is shown in Figure 2.

The test phase (block 6) was identical to the training
blocks except that participants were now asked to separate
“B” stimuli from “C” stimuli. Specifically, the question “B
or C?” was used in every test trial of the A/B condition. In
the YES/NO condition, test trials used the questions “Is this
a ’B’?” or “Is this a ’C’?”, and correct “NO” responses were
always from the “C” or “B” categories (respectively). Cate-

1The texture was one of the masks used in Hélie and Cousineau
(2015). For an example texture, see Figure 1 in the cited article.



TRAINING METHODOLOGY AND CATEGORY REPRESENTATION 5

Figure 2. Experimental procedures. The top row shows an
example A/B trial while the bottom row shows an example
YES/NO trial. 1 TR = 720 ms.

gories and questions were equally likely. A non–informative
texture replaced the feedback during the test phase.

Neuroimaging

A rapid event–related design fMRI procedure was used
to examine BOLD signal as participants categorized visual
stimuli. The scanning session was conducted at the Pur-
due Life Science MRI Facility using a 3T Siemens Prisma
scanner with a 64–channel head coil. Each block in the
experiment used a separate scan. Functional runs used the
lifespan HCP multiband echo–planar images (EPI) sequence
(S. M. Smith et al., 2013). The sequence parameters were as
follows: multiband acceleration factor: 8; TR: 720 ms; echo
time (TE): 30 ms; flip angle (FA): 52◦; field of view (FOV):
210 mm. Each volume consisted of 72 slices acquired par-
allel to the static magnetic field (z–direction) and each slice
was a matrix of 104 × 104. The resulting voxels where 2 mm
isometric. Each functional run had a different number of TR
(because of jittering) but lasted about 8 minutes. Before the
beginning of the experiment, a regular localizer was run, and
after the experiment a T1–weighted MPRAGE (TR = 2,300
ms; TE = 2.98 ms; FA = 9◦; 176 sagittal slices; 1.1 mm
thick; 1 mm × 1 mm in–plane resolution; 256 × 256 matrix)
high–resolution structural scan was run. Each scanning ses-
sion lasted about 60 minutes. The experimenter talked with
the participant between each scan, and the participant was
allowed to take a break between each scan (but not to exit
from the scanner). These manipulations were designed to
minimize fatigue and monotony.

Computational modeling

Computational models were fit to the categorization re-
sponses of individual participants in the last two blocks of
training and used to predict each participant’s categoriza-
tion responses during the test block and identify the type
of category representation that was learned. Hélie, Sham-
loo, and Ell (2017) showed that the type of representations
learned by individual participants can be identified by fit-
ting density–based and boundary–based models to their re-
sponses. Specifically, we fit Gaussian density models to cap-
ture within–category representations and linear boundary–
based models to capture between–category representations.
These models have been selected because the optimal bounds
separating the categories used in the experiment are linear,
and the optimal bound separating two Gaussian distributions
is also linear – so both models are optimal for the categories
used. Also, the density models are generative models that
rely on each category’s statistics (e.g., category mean and
covariance), which are examples within–category informa-
tion. In contrast, the boundary–based models are classifi-
cation models that rely on separation bounds and noise on
the separation bounds. These are examples of betweeen–
category information.

Because of the information contained in the models (i.e.,
what the model parameters represent), when the best–fitting
model is density–based the participant is said to have learned
within–category information. In contrast, participants best–
fit by boundary–based models are said to have learned
between–category information. Modelling details and fitting
procedures are described in the Appendix.

Neuroimaging analysis

Preprocessing and data analysis were conducted using
FEAT (FMRI Expert Analysis Tool) version 6.00, part of
FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki). Preprocessing was done
separately on each EPI scan to reduce sources of noise and
artifact, including motion correction using MCFLIRT (Jenk-
inson, Bannister, Brady, & Smith, 2002), BET brain extrac-
tion (S. Smith, 2002), and spatial smoothing with a FWHM
of 4 mm and a high pass temporal filter with a cutoff of 100
seconds. Each functional scan (EPI) was linearly aligned
with the participant’s structural scan and a non–linear trans-
formation was used for normalization to the MNI152_2mm_-
brain template. Scanning data with excessive head motion
(i.e., greater than 1 mm) was micro–scrubbed by creating a
nuisance regressor for each TR in which motion was exces-
sive.

Main task–based analysis. First, low–level analyses
were performed separately on each EPI scanning block.
Three events were defined: stimulus, feedback, and blank.
The stimulus events from error trials were not included in all
neuroimaging analyses. Each event was modeled by a sepa-
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rate regressor and convolved with a double–gamma haemo-
dynamic response function. A temporal derivative and tem-
poral filtering were added to the design matrix. The contrast
of interest was Stimulus > Blank, and Feedback was used
as a nuisance regressor. Second, the results of the low–level
analyses were input into mid–level analyses to aggregate the
training block data (Blocks 1–5). The mid–level analyses
yielded a separate brain map for each participant. Both the
low– and mid–level analyses used fixed effects modeling.
Next, a high–level analysis was performed using the out-
put of the mid–level analysis as input (i.e., one aggregated
brain map of training blocks for each participant). Two con-
trasts were calculated: (1) A/B > YES/NO and (2) YES/NO
>A/B. These contrasts should reflect task characteristics (re-
gardless of category representation). The high–level analysis
used random effects modeling (FLAME 1+2) with a thresh-
old value of Z > 1.96 and cluster–size correction of p < .05.
While this Z threshold can be considered lenient, it has been
used in earlier categorization work and Eklund, Nichols, and
Knutsson (2016) have shown that using FLAME with clus-
ter correction does not yield as many false positives as other
reviewed methods when using a rapid event–related design.

Exploratory analyses. In addition to the main analysis
described in the previous section, three exploratory analyses
were performed: (E1) a model–based training analysis, (E2)
a task–based training functional connectivity analysis, and
(E3) a task–based test analysis.

The first exploratory analysis (E1) used a post hoc clas-
sification of the participants based on the fit of computa-
tional models to the behavioral data (Hélie, Shamloo, & Ell,
2017). Computational models were fit to the categorization
responses of individual participants in the last two blocks of
training and used to predict the participant’s categorization
responses during the test block and identify the type of cate-
gory representation that was learned. However, the computa-
tional models used do not allow for traditional model–based
analyses (Ashby, 2019). The problem is model mimicry.
During training, both the density–based and boundary–based
models can mimic each other. The test phase was designed
specifically to allow for distinguishing between the models
(for details see the Appendix). The index used for model se-
lection was the accuracy of the model fit to the training data
on each participant’s test data (i.e., cross–validation error).
Crucially, the test data were not used to estimate the model
parameters. As a result, the model fit is scaled between 0 and
1 (1 meaning that the model perfectly predicts test data and
0 meaning that it cannot predict a single test trial).

For the model–based fMRI analyses we calculated a
weighed average of the BOLD signal of all participants
weighed by their model fit. For example, one participant may
have a fit of 0.50 for the boundary model and a fit of .75 for
the density model. To calculate the weights, we normalized
these fits so that this participant’s weight is 0.5 / (0.5 + 0.75)

= 0.4 for the boundary model and 0.75 / (0.5 + 0.75) = 0.6
for the density model (for each participant, model weights
sum to 1). For the density model–based fMRI analysis, we
used the output of the mid–level analyses described above
as input and calculated the mean for all non–random partic-
ipants, using that participant’s density fit as a weight. The
same was done for the boundary model–based fMRI analy-
sis. We then compared these means: (1) Boundary > Den-
sity and (2) Density > Boundary. We used the same random
effects modeling, thresholds, and corrections as in the main
task–based analysis described above. In addition, we also
performed a conjunction analysis on the mean Density and
Boundary BOLD signal to identify a shared categorization
network. The conjunction analysis used a threshold value of
Z > 3.72 and cluster–size correction of p < .05.

The second exploratory analysis (E2) was used to as-
sess task–based functional connectivity during training. We
used a PPI analysis with a seed in the MTL. First, a MTL
mask was created by adding the following anatomical masks
in MNI space: 1) Parahippocampal Gyrus, anterior divi-
sion and 2) Parahippocampal Gyrus, posterior division (both
from Harvard-Oxford Cortical Structural Atlas); 3) Left Hip-
pocampus and 4) Right Hippocampus (both from Harvard-
Oxford Subcortical Structural Atlas); 5) GM hippocampus
entorhinal cortex L and 6) GM Hippocampus entorhinal cor-
tex R (both from Juelich Histological Atlas). The resulting
mask was then binarized and transformed to each individual
participant’s structural space. The following was repeated
individually for each participant training block (Blocks 1–5).
First, the mean time series within the mask was calculated.
This was used as the physiological regressor. Second, the
stimulus event was used as the psychological regressor. A
third regressor was created as the interaction of the first two.
The same preprocessing steps were used as for the regular
BOLD analyses described above, and the low–level PPI anal-
yses were input into mid–level analyses to calculate an aver-
age PPI brain map for each participant. Again, both the low–
and mid–level analyses used fixed effects modeling. Finally,
the mid–level analyses were input into a high–level analysis
that used random effects modeling (FLAME 1+2) and cal-
culated the same contrasts using the same thresholds as the
main task–based analysis described above.

The third exploratory analysis (E3) was a task–based anal-
ysis on the test data. This analysis was identical to the main
task–based analysis, except that the input was the output of
the low–level analysis performed on the test block (Block 6).
This last analysis was used to address the exploratory aim
of whether the removal of feedback and new category com-
parison would affect the brain signal responsible for catego-
rization decisions. This last exploratory analysis also used
random effects modeling (FLAME 1+2) and calculated the
same contrasts using the same thresholds as the main task–
based analysis described above.



TRAINING METHODOLOGY AND CATEGORY REPRESENTATION 7

Figure 3. Mean accuracy per block. Blocks 1–5 are the
training phase and Block 6 is the test phase. Error bars are
between–subject standard error of the mean.

Results

The data from two participants in the A/B condition were
removed for excessive head motion (> 1 mm) over the entire
session (so that micro–scrubbing was not possible). The fol-
lowing analyses thus include the data from 20 participants in
each conditon.

Behavioral results

The mean accuracy for each block in each condition is
shown in Figure 3. As can be seen, training accuracy was
similar for the A/B and YES/NO training tasks. This was
confirmed by a Task (A/B, YES/NO) × Training Block (1...5)
mixed ANOVA. The effect of Block was statistically signif-
icant (F(4, 152) = 31.41, p < .0001, η2 = 0.17) but the ef-
fect of Task (F(1, 38) = 0.59, p = .4474, η2 = 0.01) and
the interaction between the factors (F(4, 152) = 2.18, p =
.0736, η2 = 0.01) were not. The mean accuracy in Block 1
was 57.5%, which improved to 74.5% in Block 5, and no
difference was found between the learning rate in both tasks.

Transfer cost, however, differed between the two tasks.
Categorical knowledge was better transferred in the YES/NO
task than in the A/B task. This was confirmed by a Task
(A/B, YES/NO) × Block (Last training block, Test block)
mixed ANOVA. The effect of Block reached statistical sig-
nificance (F(1, 38) = 6.13, p = .0179, η2 = 0.04) while the
effect of Task did not (F(1, 38) = 0.64, p = .4274, η2 =

0.01). However, these effects need to be interpreted in the
context of a statistically significant interaction (F(1, 38) =
5.07, p = .0303, η2 = 0.03). Since our interest in is trans-
fer cost, we decomposed the effect of Block within each
level of Task, and the results show a statistically signifi-
cant cost in performance at test for the A/B task (t(19) =

3.68, p = .0016, η2 = 0.42) but not for the YES/NO task
(t(19) = 0.15, p = .8853, η2 = 0.00). The mean accuracy
cost in the A/B task was 11.1% while the mean accuracy cost
in the YES/NO task was 0.5%. Both the training and transfer
ANOVA reproduced the results in Hélie, Shamloo, and Ell
(2017) Experiment 1.

Model–based results. Boundary–based models,
density–based models, and a random response model
were fit to the participants’ data. In the YES/NO task, 7
participants were best–fit by the density–based model, 8
participants were best–fit by the boundary–based model, and
the remaining 5 participants were best–fit by the random
model. In the A/B task, 10 participants were best–fit by
the density–based model, 6 participants were best–fit by the
boundary–based model, and the remaining 4 participants
were best–fit by the random model. We did not find any
evidence that the training task affected the distribution of
best–fitting models (χ2(2) = 0.93, p = .6293). This result is
different from Hélie, Shamloo, and Ell (2017) Experiment 1,
who found more participants best–fit by the boundary model
in the A/B training task condition.

Neuroimaging results

Main task–based analysis. The training results for
task–related contrasts are listed in Table 1. As can be seen,
five clusters have been identified for the contrast YES/NO
> A/B. These clusters are shown in Figure 4 (red/yellow).
As discussed in the Introduction section, one important dif-
ference between the YES/NO task and the A/B task is that
with A/B there are direct Stimulus→ Response associations.
For example, if a given stimulus is a member of category
“A”, then the left button in the left hand is always the cor-
rect button press. Likewise, a “B” stimulus is always as-
sociated with the right button in the left hand. However,
this is not the case with the YES/NO task. A member of
category “A” is sometimes associated with a button press
in the left hand (“YES”) and sometimes associated with a
button press in the right hand (“NO”), depending on which
question was asked. As a result, rules learned in the A/B
task are univalent (i.e., each stimulus is associated with a
unique button press) whereas rules learned in the YES/NO
task are bivalent (i.e., each stimulus can be associated to
more than one button press, depending on context) (Bunge,
2004). Clusters 2, 4, and 5 are consistent with this task dif-
ference. These clusters include the preSMA, ventrolateral
PFC, and frontal pole. The preSMA is involved in internally
generated movement (Nachev et al., 2008), which happens
when participants need to choose which button to press after
having categorized the stimulus. The ventrolateral PFC is an
important part of the WM network (Ashby et al., 2005) and
is involved in rule application (Tsujii, Masuda, Akiyama, &
Watanabe, 2010). The frontal pole plays an important role in
higher–level cognition and set–shifting (Simard et al., 2011;
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Wang et al., 2010). Clusters 1 and 3 include the angular
and supramarginal gyri. The right angular gyrus has been
associated with reward acquisition while interacting the en-
vironment (S. W. Cole, Yoo, & Knutson, 2012). The left
supramarginal gyrus has been associated with visual feature
integration and coordination in WM (Morgan et al., 2011).
So these two clusters may be supporting different, comple-
mentary function. On the one hand, the right angular gyrus
is also strongly connected with the posterior hippocampus,
which is thought to contain detailed, fine–grained stimulus
representations (Bowman & Zeithamova, 2018). Because
the YES/NO task requires answering questions about specific
stimuli, a more detailed representation may be critical and
allow for better estimating the likelihood of obtaining a re-
ward in each trial (e.g., by estimating the distance of the cur-
rent stimulus from a prototype). On the other hand, the left
supramarginal gyrus has been observed in task–switching ex-
periments (Philipp et al., 2013). This result, along with the
findings for C2, is consistent with the hypothesis that partic-
ipants may use the question as context to select the appropri-
ate rule and treat each question as a separate task. Such oper-
ation would require coordination in WM (Fleischer & Hélie,
2020). While speculative, if this interpretation is correct par-
ticipants would switch task when the question changes.

Figure 4. BOLD clusters for task–related training contrasts.
The slices shown range from z = −25 to z = 75 from left
to right and top to bottom by jumps of 5. YES/NO > A/B
clusters are shown in red/yellow while A/B > YES/NO are
shown in blue. Cluster coordinates are listed in Table 1.

Table 1 and Figure 4 also show two clusters that were
more activated in the A/B task than in the YES/NO task
(blue). Cluster 7 spanned the thalamus and caudate nu-
cleus, which are part of a network of areas related to asso-

ciative learning (Hélie, Ell, & Ashby, 2015). For example,
the COVIS model of category learning (Ashby et al., 1998)
assigns these brain areas to procedural learning, and Hélie
et al. (2010) found similar brain activity for initial learning
of Stimulus → Response associative rules. Hélie et al. sug-
gested that early learning of Stimulus → Response associ-
ations may be critical for succesful hypothesis–testing and
rule learning (see also Hélie, Proulx, & Lefebvre, 2011).

Overall, the task–based results support the hypothesis that
participants in the YES/NO task may use bivalent rules and
switch task as a function of the question displayed on the
screen. In contrast, the BOLD signal in the A/B condition is
more consistent with participants learning direct Stimulus→
Response rules.

Exploratory analysis 1: Model–based training. The
first exploratory analysis was an attempt at identifying
BOLD signal related to the participants’ type of category
representation. Computational models were fit to the partici-
pant’s behavioral data and the model fits were used to weigh
each participant into average brain maps. As a reminder,
participants best–fit by the density model were thought to
have learned within–category information, while participants
best–fit by the boundary model were thought to have learned
between–category information. Participants best–fit by a
random model were not included in this exploratory analy-
sis. Three contrasts were calculated: (1) Boundary & Den-
sity, (2) Boundary > Density, and (3) Density > Boundary.
Contrast (1) was a conjunction map that should reveal a joint
categorization network, whereas contrasts (2) and (3) should
show representational differences. The resulting clusters are
listed in Table 2 and shown in Figure 5. Note that no cluster
survived correction for multiple testing for Density > Bound-
ary.

As can be seen, the conjunction analysis yielded 14 clus-
ters (shown in Blue in Figure 5). Cluster 1 was very large and
the coordinates of local maxima are shown in Table 3. Most
of the maxima are located in the temporal occipital fusiform
and lateral occipatal cortices. Other clusters listed in Table 2
include the middle frontal gyrus (C2, C3, C13), orbitofrontal
/ insular cortex (C4), the thalamus (C6, C7, C9), and the cau-
date nucleus (C8, C11). This corresponds to a typical cat-
egory learning network (Carpenter, Wills, Benattayallah, &
Milton, 2016; Hélie et al., 2010; Milton, Bealing, Carpen-
ter, Bennattayallah, & Wills, 2017; Seger, Dennison, Lopez-
Paniagua, Peterson, & Roark, 2011; Seger, Braunlich, Wehe,
& Liu, 2015; Zeithamova et al., 2008, 2019). It is interesting
to note that this network is observed even when results from
two seperate tasks are pooled together. This suggests that
these brain areas may be related to category learning gener-
ally and not to the specific tasks used in the laboratory.

Figure 5 also shows clusters for the Boundary > Density
contrast (red/yellow). Two clusters were statistically signifi-
cant (see Table 2). The first cluster (C15) span the right angu-
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Table 1
Task–related BOLD clusters during training

Coordinates

Cluster Size p Max(Z) x y z Brain regions

YES/NO > A/B
1 1,126 < .0001 4.22 48 -56 54 R. angular gyrus
2 639 < .0001 4.09 34 58 10 R. frontal pole
3 549 .002 3.88 -58 -40 54 L supramarginal gyrus
4 429 .009 4.45 -20 14 68 L. superior frontal

gyrus
5 348 .036 3.95 38 6 44 R. middle frontal

gyrus
A/B > YES/NO

6 354 .033 3.52 10 -90 -18 L./R. lingual gyrus
7 346 .037 3.86 6 8 18 R. thalamus/caudate

Figure 5. BOLD clusters for model–based training contrasts.
The slices are the same as in Figure 4. Boundary > Density
clusters are shown in red / yellow, while clusters from the
conjunction analysis are shown in shades of blue. No cluster
survived correction for the Density > Boundary contrast. All
cluster coordinates are listed in Table 2.

lar gyrus and the superior temporal gyrus. These brain areas
are part of posterior parietal cortex (as hypothesized). While
right angular gyrus activation was also found in the YES/NO
> A/B contrast (see Table 4), C15 is more anterior and in-
ferior and there is little overlapping activation between these
clusters. Previous research linked activity in C15 to cognitive
control, specifically response inhibition in the stop–signal–
task (Boehler, Appelbaum, Krebs, Hopf, & Woldorff, 2010;

Hwang, Velanova, & Luna, 2010). It is unclear why partic-
ipants learning between–category information would show
more activity related to response inhibition. One intriguing
possibility is Hélie et al. (2015) proposed that perceptual cat-
egorization rules were implemented by inhibiting incorrect
motor programs using pre–synaptic inhibition (instead of ac-
tivating the correct motor program). In Hélie et al.’s com-
putational model, however, the pre–synaptic inhibition was
implemented in lateral PFC – not posterior parietal cortex.

Exploratory analysis 2: Task–based training func-
tional connectivity. The second exploratory analysis used
PPI on the training data with a MTL seed. The resulting
clusters of activity are listed in Table 4 and shown in Figure
6. As can be seen, 5 clusters reached statistical significance
in the YES/NO > A/B contrast (red/yellow) and 2 clusters
reached statistical singificance in the A/B > YES/NO con-
trast (blue). For the YES/NO task, MTL functional connec-
tivity was increased in a wide network that span the right su-
perior parietal lobule (C1) and middle/superior frontal gyri
(C2, C5). These clusters overlap with the dorsal attention
network and a previously identified rule learning network
(Bowman & Zeithamova, 2018; Zeithamova et al., 2019).
These clusters also overlap with the cognitive control net-
work (M. W. Cole & Schneider, 2007). This is consistent
with the hypothesis that participants used bivalent rules in
the YES/NO task. Considering context in response selection
may put more demands on WM and require a higher level
of cognitive control (Majerus et al., 2017) than the univa-
lent rules used in the A/B task. This interpretation makes
intuitive sense given (1) that participants see a larger number
of possible questions in this task (4 in the YES/NO task vs.
2 in the A/B task) and (2) the absence of a direct Stimulus
→ Response association. Cluster C3 is also noteworthy as
it includes the left angular/supramarginal gyrus. Note that
activity in this brain area was also observed in the YES/NO
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Table 2
BOLD clusters during training for contrasts based on category representation

Coordinates

Cluster Size p Max(Z) x y z Brain region(s)

Conjunction
1 16,265 < .0001 6.14 36 -50 -16 R. temporal occipital

fusiform complex
2 816 < .0001 5.42 50 14 26 R. middle frontal

gyrus
3 801 < .0001 5.98 -48 8 28 L. middle frontal gyrus
4 307 < .0001 5.39 36 26 0 R. frontal orbital / in-

sular cortex
5 205 < .0001 5.55 -28 18 10 L. insular cortex /

frontal operculum
6 196 < .0001 4.56 -10 -20 10 L. thalamus
7 176 < .0001 4.6 -8 -20 -6 L. thalamus / brain-

stem
8 160 < .0001 5.55 12 2 18 R. caudate
9 122 < .0001 4.57 14 -16 6 R. thalamus
10 98 < .0001 4.3 -34 -4 16 L. insular cortex / cen-

tral operculum
11 62 .0004 4.4 -10 4 14 L. caudate
12 59 .0006 4.53 -2 -56 -36 L. cerebellum
13 36 .0129 4.07 44 26 38 R. middle frontal

gyrus
14 30 .0323 4.4 -22 -34 -44 L. cerebellum

Boundary > Density
15 1328 < .0001 4.23 60 -46 26 R. angular gyrus /

supramarginal gyrus /
parietal operculum

16 390 .0249 3.23 -56 -22 6 L. parietal operculum /
planum temporale

Density > Boundary
None.

>A/B contrast (see Table 4), but there is no overlap. Activity
in the cluster found in the PPI analysis has been associated
to memory encoding (Vaidya, Zhao, Desmond, & Gabrieli,
2002) and retrieval (Stock, Röder, Burke, Bien, & Rösler,
2009), and may play an important role in category represen-
tation.

Table 4 and Figure 6 also show cluster activity for the A/B
> YES/NO contrast. As can be seen, two clusters reached
statistical significance, both located in the PFC. The frontal
pole is related to decision–making, reward processing (Hélie,
Shamloo, Novak, & Foti, 2017; O’Doherty, Cockburn, &
Pauli, 2017), learning bivalent rules and rule sets (Badre,
2008; Fleischer & Hélie, 2020), and memory generalization
(Zeithamova et al., 2019). Relatedly, the dorsolateral PFC is
related to cognitive control and WM (and is part of both the

dorsal attention network and the cognitive control network;
Ashby et al., 2005; M. W. Cole & Schneider, 2007; Vossel
et al., 2014). This result suggests that different parts of the
dorsal attention network may be involved in the two learning
tasks, possibly corresponding to encoding load and cognitive
control (Majerus et al., 2017). Interestingly, these brain areas
showed more task–related activity in the YES/NO task. Yet,
results from the exploratory PPI analysis suggest that their
task–based functional connectivity with the MTL is stronger
for the A/B task. As a reminder, the PPI analysis was ex-
ploratory, and more research is needed to better understand
the possibly different role of the dorsal attention in these two
training tasks.

Exploratory analysis 3: Task–based test. The last ex-
ploratory analysis tested contrasts focused on Block 6. While
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Table 3
Task–related local maxima in Cluster 1 from Table 2

Coordinates

Maximum Max(Z) x y z Brain regions

1 6.14 36 -50 -16 R. temporal occipital fusiform cortex
2 6.07 30 -46 -20 R. temporal occipital fusiform Cortex
3 6.06 50 -60 -6 R. inferior temporal gyrus
4 5.72 -24 -86 4 L. lateral occipital cortex
5 5.68 -28 -94 8 L. occipital pole
6 5.67 -20 -66 34 L. lateral occipital cortex
7 5.66 30 -84 14 R. lateral occipital cortex
8 5.66 -30 -92 -4 L. occipital pole
9 5.65 28 -60 -14 R. temporal occipital fusiform cortex

10 5.63 26 -56 -14 R. temporal occipital fusiform cortex
11 5.61 36 -76 22 R. lateral occipital cortex
12 5.61 38 -74 36 R. lateral occipital cortex
13 5.60 34 -68 -12 R. occipital fusiform gyrus
14 5.60 -30 -48 -16 L. temporal occipital fusiform cortex
15 5.60 -22 -98 -10 L. occipital pole
16 5.58 32 -46 -34 R. cerebellum
17 5.57 -32 -80 24 L. lateral occipital cortex
18 5.56 -20 -66 38 L. lateral occipital cortex
19 5.56 32 -50 -34 R. cerebellum
20 5.55 30 -48 -24 R. cerebellum

Table 4
Task–related PPI clusters during training with MTL seed

Coordinates

Cluster Size p Max(Z) x y z Brain region(s)

YES/NO > A/B
1 2035 < .0001 3.86 28 -68 48 R. superior parietal

lobule
2 1127 < .0001 4.54 52 16 46 R. middle frontal

gyrus
3 490 .0011 3.49 -44 -54 50 L angular/supra-

marginal gyrus
4 323 .0236 3.51 52 -76 -2 R. lateral occipital cor-

tex
5 310 .0305 3.47 -26 18 56 L. superior frontal

gyrus
A/B > YES/NO

6 1704 < .0001 4.48 -34 42 14 L. frontal pole
7 323 .0236 4.26 -16 24 40 L. superior frontal

gyrus
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Figure 6. PPI clusters for task–related training contrasts with
MTL seed. YES/NO > A/B clusters are shown in red/yellow
while A/B >YES/NO are shown in blue. Cluster coordinates
are listed in Table 4.

the test block was initially included to eliminate model
mimicry and allow for classifying participants based the type
of knowledge representation learned, the data might contain
interesting information about the possible effects of remov-
ing feedback. As a reminder participants performed the same
task at test as they did at training using the same categories.
However, new pairs of categories were contrasted (i.e., “B”
vs. “C”). The other difference is that accuracy feedback was
no longer provided.

Statistically significant clusters found at test are listed in
Table 5. As can be seen, three clusters were found for the
YES/NO > A/B contrast, and none were found in the A/B >
YES/NO contrast. The YES/NO > A/B clusters are shown
in Figure 7. One cluster was located in the right middle
PFC while another was located in the right intraparietal sul-
cus. These clusters are very close to C1 and C5 observed
in training (see Table 1), which suggests that participants in
the YES/NO task may be using a similar response strategy to
what they used during training, namely using bivalent rules
and switching task using the question as a context cue.

Discussion

The present experiment explored the effects of training
methodology and category representation on brain activity
in a rule–based categorization task. The main findings are:
(1) participants in the YES/NO training task may learn con-
textual rules and treat each contextual question as a different
task, and (2) individual differences in the type of category

Figure 7. BOLD clusters for task–based test contrasts. The
slices are the same as in Figure 4. YES/NO > A/B clusters
are shown in red/yellow. There was no statistically signif-
icant cluster for A/B > YES/NO. Cluster coordinates are
listed in Table 5.

information learned can produce different BOLD response.
These novel findings have important implication for future
research in categorization that will now be explored in turns.

What type of rules are learned in categorization?

Previous empirical (for a review, see Ashby & Valentin,
2017) and computational modeling (Ashby et al., 1998) work
suggest that participants can learn verbalizable classification
rules using hypothesis–testing. Rules can be univalent (each
stimulus is always associated with the same motor response)
or bivalent (each stimulus can be associated with more than
one motor response depending on context) (Bunge, 2004).
Rules can contain between–category information (e.g., mice
are smaller than cats) or within–category information (e.g.,
mice are small) (Hélie, Shamloo, & Ell, 2017). Most previ-
ous work on category learning has treated the YES/NO cate-
gorization task as equivalent to the A/B categorization task.
One exception was provided in Zeithamova et al. (2008),
who used high–dimensional stimuli with discrete dimensions
and showed that performance in the A/B task was mediated
by brain areas associated with episodic memory whereas per-
formance in the YES/NO task was mediated by brain areas
associated with non–declarative memory. These results were
surprising given that the A/B task requires learning univa-
lent rules whereas the YES/NO task requires learning biva-
lent rules. Bivalent rules are typically represented more ros-
trally in the PFC (Badre et al., 2010; Bunge, 2004; Hélie et
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Table 5
Task–related BOLD clusters during test

Coordinates

Cluster Size p Max(Z) x y z Brain region(s)

YES/NO > A/B
1 1866 < .0001 4.06 36 10 66 R. middle frontal

gyrus
2 778 .0001 3.56 46 -34 42 R. intraparietal sulcus
3 384 .0278 3.52 46 -78 32 R. lateral occipital cor-

tex
A/B > YES/NO

None.

al., 2010). One possibility is that, since the stimuli in Zei-
thamova et al. had binary dimensions and were more dis-
tinct from each other, participants were able to memorize the
Stimulus → Response associations and retrieve them from
memory.

In the present experiment, each stimulus was unique and
the stimulus dimensions varied continuously, so memorizing
the stimuli was not a viable strategy. For example, Hélie et
al. (2010) used similar sine–wave gratings with the A/B task
and showed that hippocampus activity was negatively corre-
lated with categorization accuracy. To perform well in this
task, participants needed to learn rules that can be general-
ized to new stimuli. As a result, the bivalent rules that par-
ticipants needed to learn in the YES/NO task produced more
activity in the preSMA, ventrolateral PFC, and frontal pole.
They also showed increased task–based functional connec-
tivity between the MTL and the dorsal attention network, as
well as between the MTL and the cognitive control network.
These results are consistent with the hypothesis that contex-
tual rules require more attentional resources and cognitive
control. Interestingly, brain areas related to task–switching
also showed increased activity in the YES/NO task, consis-
tent with the possibility that participants may have treated
each question as a separate task and switched task when
the question changed. This interpretation is speculative, and
more research is needed to confirm its correctness.

In contrast, univalent rules were sufficient in the A/B task,
which produced more activation in the thalamus and caudate.
These areas form a network that is well–suited for Stimulus
→ Response associative learning (Hélie et al., 2015). Impor-
tantly, the question asked did not affect which button needed
to be pressed after category membership was decided. There
was thus no need to treat each question as a separate task
(Fleischer & Hélie, 2020). Overall, the qualitative differ-
ences in the type of rules that participants needed to learn
in the A/B and YES/NO categorization tasks were well re-
flected by the task–based fMRI results.

What type of information is learned in categorization?

Hélie, Shamloo, and Ell (2017) showed that some par-
ticipants learn rules containing within–category information
while others learn rules containing between–category infor-
mation. The type of category representation that participants
learn can be identified using computational modeling. In
the present experiment, we found that about half the non–
random participants in each task condition learned each type
of category representation. Unsurprisingly, the results show
that there is a large network of category learning brain areas
that is shared by participants learning both types of repre-
sentations (as reviewed in Zeithamova et al., 2019), but there
were also some differences. Specifically, two clusters of ac-
tivity were found in the anterior lateral portion of inferior
parietal cortex for participants learning between–category in-
formation. Stillesjö, Nyberg, and Wirebring (2019) argued
that inferior parietal cortex is associated with similarity–
based processes, and Zeithamova et al. (2019) reviewed evi-
dence showing that this brain area is related to category rep-
resentation in both human and non–human primates. Specifi-
cally, the inferior parietal cortex has been related to the prob-
ability of receiving a reward. In the context of between–
category information, this could correspond to the distance–
to–bound effect, which shows that the probability of receiv-
ing a reward increases as the stimulus is located further away
from the decision bound. Hélie, Waldschmidt, and Ashby
(2010) have shown that the distance–to–bound effect is re-
duced with extensive practice, so if this interpretation is cor-
rect these clusters of activity would also diminsh with exten-
sive practice. The present experiment was not designed to
directly test for this possibility, so more research is needed to
verify this interpretation.

Limitations and future work

One important limitation of the present experiment is sam-
ple size. The experiment included 40 participants, which is
typically sufficient in most contexts but can be small when
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participants are separated into subgroups using computa-
tional modeling. As a result, the present study was not able to
reproduce the bias towards between–category representation
previously observed for rule–based categories in the A/B task
(Hélie, Shamloo, & Ell, 2017). The pattern of responses as-
sociated with each type of category representation was well
reproduced, but some of the brain activity related to each type
of category representations may have been missed. Future
research should include more participants, which would also
allow for testing possible Task (A/B, YES/NO) × Category
Representation (Boundary, Density) interactions.

Another important limitation is related to the duration of
the test phase. The computational models used to identify
the type of category representations learned by the partici-
pants rely on categorization accuracy at test (Hélie, Shamloo,
& Ell, 2017). It is possible that the observed performance
at test is transitory, and that categorization would improve
and accuracy cost diminish if the test was longer. A possi-
ble change in performance could affect the identification of
the type of representations learned by the participants, which
could affect the BOLD signal. Future research should in-
clude a longer test period, perhaps as long as the training
phase, to confirm that 100 test trials is sufficient to accurately
identify the type of category representations learned by indi-
vidual participants.
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Appendix

In this Appendix we describe the modelling procedure
used to identify each participant’s category representation.
This procedure is adapted from Hélie, Shamloo, and Ell
(2017). The first step was to identify participants who re-
sponded randomly at the end of training (i.e., non–learners).
We used a Binomial distribution with n = 100 (number of
trials in Block 5) and p = 0.5 (chance performance in each
trial) to model a random responder in the last block of train-
ing. This distribution shows that the probability of obtaining
an accuracy above 59% in Block 5 by responding randomly
was less than p < .05 (bidirectional). As a result, participants
with an accuracy below 59% in Block 5 were labeled as using
the random model.

For all other participants, we fit Gaussian density models
(e.g., Bishop, 2006) to capture within–category representa-
tions and linear boundary models (e.g., Maddox & Ashby,
1993) to capture between–category representations. These
models have been selected because the optimal bounds sep-
arating the categories used in the experiments are linear, and
the optimal bound separating two Gaussian distributions is
also linear – so both models are optimal for the categories
used.

Density model

The first step is to draw the participant’s decision space.
This means assigning a participant response to each coordi-
nate point in the stimulus space (so that each participant has
their own decision space). The result is similar to Figure
1 except that the participant’s responses are used as sym-
bols instead of the desired category labels. For the density
model, a different gaussian distribution is fit to each pos-
sible response category (i.e., A–D). For YES/NO training,
only trials in which the participant responded “yes” were in-
cluded, because there is no way to know what category the
participant had in mind when responding “no”. For exam-
ple, the “A” density is estimated by including only trials in
which the question was “Is this an ’A’?” and the participant
responded “yes”. The same procedure was used to estimate
the densities representing categories “B”, “C”, and “D”. For
A/B training, all trials in which the participant pressed the
“A” response button were used to estimate the “A” density
(or “B”, or “C”, or “D” to estimate the densities correspond-
ing to categories B–D). In all cases, the maximum likelihood
estimators were used (i.e., the sample mean and variance).
Note that this model has 8 free parameters, i.e., the mean and
variance of the radians for each category.

With the density model, the probability of identifying a
stimulus as being located in the perceptual region associated
with CX is:

p(CX |di) =
fX(di)

fX(di) + fY (di)
(A1)
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where p(CX |di) is the probability of locating stimulus di in
the perceptual region associated with category X (denoted
CX), fX(di) is the probability of di according to the density
estimated for CX , and fY (di) is the probability of di according
to the density estimated for CY , where Y is the contrasting
category. With the density model, Eq. A1 is used both at
training and at test.

Boundary model

For the boundary models, the procedure is similar to that
of the density models except that boundaries are estimated
between the categories (instead of estimating densities within
the categories). The procedure is exactly the same as de-
scribed in (Maddox & Ashby, 1993). Each bound is rep-
resented by a gaussian distribution where the mean is the
location of the bound and the variance corresponds to per-
ceptual noise. The same participant’s space as for the den-
sity model is drawn. Because the training phase only con-
trasted category “A” with “B” and category “C” with “D”,
only these two bounds were estimated. Estimating the AB
boundary used all the trials in which the question referred to
these categories for the YES/NO condition, and all the trials
in which response buttons “A” or “B” were pressed for the
A/B condition. The same procedure was used to estimate the
CD boundary. All the parameters were estimated using max-
imum likelihood (Maddox & Ashby, 1993). Note that this
model has 4 free parameters, corresponding to the location
and noise of each bound.

With the boundary model, the probability of identifying
a stimulus as being located on the A side of the AB bound
during training is:

p(CA|di) = 1 − FAB(di) (A2)

where p(CA|di) is the probability of locating stimulus di on
the A side of the AB bound (denoted CA), and FAB(di) is the
probability of di according to the cumulative density function
estimated for the AB bound. The probability of identifying
a stimulus as being located on the B side of the AB bound is
simply p(CB|di) = 1−p(CA|di) = FAB(di). The same equation
applies at training for the CD bound (but substitute CC → CA

and CD → CB).
A different equation needs to be used at test with the

boundary models because there is no BC bound, and both
the AB and the CD bounds need to be considered in identify-
ing a stimulus as being located in the CB or CC region. The
boundary model at test is:

p(CB|di) =
FAB(di)

[1 − FCD(di)] + FAB(di)
(A3)

where p(CB|di) is the probability of locating stimulus di in the
CB region at test, FAB(di) is the probability of di according
to the cumulative density function estimated at training for

the AB bound, and FCD(di) is the probability of di accord-
ing to the cumulative density function estimated at training
for the CD bound. Intuitively, the numerator corresponds to
probability of responding B according to the AB bound, and
the denominator normalizes according to the probability of
responding C according to the CD bound. This extra step
is necessary because the AB bound does not allow for cal-
culating the probability of responding C, and the CD bound
does not allow for calculating the probability of responding
B. The probability of identifying a stimulus as being located
in the CC region at test is simply p(CC |di) = 1 − p(CB|di).

Decision function

Both the density and boundary models used a common
decision function that is described by:

p(RX |di) =
eαp(CX |di)

eαp(CX |di) + eαp(CY |di)
(A4)

where p(RX |di) is the probability of responding category X
(denoted RX) when stimulus di is present, p(CX |di) is the
probability of locating stimulus di in the CX region (as cal-
culated by Eq. A1, Eq. A2, or Eq. A3), and α is a noise
parameter estimated by minimizing the sum of square errors
(SSE). The probability of responding category RY is simply
given by p(RY |di) = 1 − p(RX |di).

Model selection

It should be noted that both models can predict perfect
accuracy on the training data (Hélie, Shamloo, & Ell, 2017).
However, the model predictions differ drastically at test. Be-
cause the boundary model is a special case of the density
model, and the density model has twice as many free param-
eters, the density model is guaranteed to always fit the train-
ing data at least as well as the boundary model. To avoid this
problem, model selection is performed by estimating the gen-
eralization error of the models on the test data using cross–
validation (Busemeyer & Wang, 2000; Hélie, 2006).

The following procedure was repeated separately for each
participant. First, each model (i.e., Eqs. A1, A2, and A4)
was fit to the data from the last 200 training trials (Blocks 4–
5). These trials were selected because performance is more
stable at the end of training (see Figure 3). Next, the gen-
eralization error was calculated on the test data (Block 6),
without refitting the model parameters (using Eqs. A1, A3,
and A4) (Hastie, Tibshirani, & Friedman, 2001). If the den-
sity model had the smallest generalization error, then it was
inferred that the participant learned a within–category repre-
sentation. If the boundary model had the smallest generaliza-
tion error, then it was inferred that the participant learned a
between–category representation. This fitting procedure was
applied individually to each participant in each condition.


