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Well–practiced or learned behaviors are extremely resilient. For example, it is extremely dif-
ficult for a trained typist to forget how to use a keyboard configuration that they are familiar
with. While they can be trained on a new keyboard configuration, the original skill quickly
comes back when the old keyboard configuration is used again. This resiliency of learned
skills is both a blessing and a curse. It makes useful skills durable, but it also makes mal-
adaptive behaviors difficult to extinguish. Crossley, Ashby, and Maddox (2013) proposed a
computational model and behavioral paradigm aimed at unlearning skills using various feed-
back contingency manipulations during an extinction phase. They showed that partially—valid
feedback during extinction removed evidence for fast reacquisition, which they interpreted as
evidence for unlearning. In this article, we replicated the Crossley et al. paradigm using fMRI.
Univariate analyses showed differences in BOLD signals between the different experiment
phases in the frontoparietal attention network. The superior and inferior parietal lobules (SPL
and IPL, respectively) showed the largest cluster differences both between experimental phases
and between extinction conditions. In contrast, the prefrontal cortex only showed differences
in cluster of activities between extinction conditions. Multivariate pattern analysis was also
used with seeds in the SPL and IPL. The results showed that these brain areas were critical
in detecting changes in experimental phases. Overall, the fMRI results found mixed evidence
for the Crossley et al. model and suggest that while unlearning prevents fast reacquisition, the
absence of fast reacquisition does not necessarily implies that unlearning occurred.
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Introduction

Well–practiced or learned behaviors are extremely re-
silient. Many of us have heard the phrase “nobody ever for-
gets how to ride a bike”. If one learned to ride a bicycle as
a child and tried again as an adult after decades of not rid-
ing, they would quickly regain the skill and feel comfortable.
This resiliency of learned skills is both a blessing and a curse.
On the one hand, one can pick up a musical instrument after
an extended period away from playing and quickly return to
their original skill level. On the other hand, maladaptive be-
haviors are also extremely difficult to get rid of. For example,
people with substance use disorders find limited success in
drug treatment facilities and relapses are common after they
leave (Crossley et al., 2013).

These informal observations and maxims have been ob-
served repeatedly in the instrumental learning literature with
rodents (for a recent review, see Trask, Shipman, Green, &

Bouton, 2020). In a typical experiment, the animal gradually
learns to associate a behavior (e.g., pulling a lever) with a re-
ward (e.g., a food pellet) during the acquistion phase. Next,
the reward is removed. Pulling the lever no longer results
in food reward. At this point the animal gradually reduces
the frequency of behavior. This phase is called extinction.
However, the behavior is generally not actually forgotten or
unlearned. If the reward is re–introduced, the frequency of
the behavior that was previously associated with the reward
quickly jumps back to a similar frequency as in the acquisi-
tion phase. This jump is called fast reacquisition, and it is
frequently observed during the reacquisition phase.

A computational model

So why is it so difficult to unlearn a skill? Crossley et al.
(2013) proposed a computational model based on the pro-
cedural learning system of COVIS (Ashby, Alfonso-Reese,



2 SÉBASTIEN HÉLIE (SHELIE@PURDUE.EDU)

Turken, & Waldron, 1998) with an added context detector
located in the thalamus. According to this model, when
the reward structure of the environment changes (e.g., dur-
ing the extinction phase) the thalamus sends a signal to
the striatum that protects the category representations that
have been learned by “freezing” them in place. While the
previously learned category representations are frozen, new
knowledge is learned without interfering with pre–existing
knowledge. However, when the reward structure of the en-
vironment changes back to its original context (e.g., during
the reacquisition phase), the thalamus unfreezes the category
representations learned during the acquisition phase and the
knowledge is available again. This accounts for the fast reac-
quisition observed in instrumental learning experiments.

The main prediction of the Crossley et al. (2013) model
is that if one could design an experiment where the tha-
lamus fails to detect a change in the reward context, then
the category representations learned during the acqusition
phase would not be protected and new knowledge could over-
write the previously learned associations during the extinc-
tion phase. This would cause unlearning and prevent fast
reacquisition in the reacquisition phase. This model predic-
tion was supported by behavioral experiments showing that
random feedback during the extinction phase produced fast
reacqusition (because it was easily detected), but partially–
valid feedback, where feedback in 25% of the trials was con-
tingent on behavior (with feedback in the remaining 75% of
the trials being random), went undetected and did not pro-
duce fast reacquisition. Partially–valid feedback may thus be
key to producing unlearning.

Alternative explanations

While Crossley et al. (2013)’s work focused on humans,
substantial work has been done in the rodent literature to ex-
plain the resurgenge of responses after they had been extin-
guished. Trask, Schepers, and Bouton (2015) reviewed three
possible explanations for this phenomenon: (1) response pre-
vention, (2) behavioral momentum theory, and (3) context
change. The first explanation, response prevention, suggests
that during extinction the animal does not produce the behav-
ior learned during acquisition frequently enough to be able
to unlearn it (Leitenberg, Rawson, & Bath, 1970). As a re-
sult, the behavior that was learned in the acqquisition phase
is still available after the extinction phase. The second expla-
nation, based on momentum theory, suggests that behaviors
with higher reinforcement rates are more resistant to change
when compared to behaviors with leaner reinforcement rates
(Nevin, 1974). During extinction, the reinforcer is typically
not tied to behavior, so it results in a weaker association that
is not sufficient to overcome what was learned in the acqu-
sition phase. Lastly, the third explanation (context change)
suggests that resurgence happens when a change in context
is detected between the extinction phase and the reacquisi-

tion phase (Winterbauer & Bouton, 2010). Specifically, the
animal learns to inhibit the previously learned behavior only
in the extinction context. As a result, if the reacquisition
context is different from the extinction context, then the be-
havior is no longer inhibited. Trask et al. reviewed empiricial
data suggesting that the third explanation, namely a change
in context, does better at accounting for resurgence in rodent
behavior.

The current study

Both work with humans (Crossley et al., 2013) and ro-
dents (Trask et al., 2015) converged on the extinction context
being considered different as the critical factor for fast reac-
quisition. However, Crossley et al. focused on the detection
of a change of context between the acquisition and extinction
phases for fast reacquisition, whereas Trask et al. focused on
the detection of a change of context between the extinction
phase and the reacquisition phase for fast reacqusition.

In the present experiment, we replicated the Crossley et
al. (2013) behavioral paradigm using a functional Magnetic
Resonance Imaging (fMRI) design. Consistent with Crossley
et al., we predicted that random feedback in the extinction
phase would not produce unlearning, as evidenced by the
presence of fast reacqusition. In contrast, partially–valid
feedback in the extinction phase should yield unlearning, as
evidenced by the absence of fast reacquisition. Note that this
is a within–subject hypothesis tested by comparing each par-
ticipant’s response accuracies at the end of the acquisition
phase with their response accuracies at the beginning of the
reacquisition phase. If there was unlearning during the ex-
tinction phase, the accuracies at the beginning of the reac-
quisition phase should be lower then accuracies at the end of
the acquisition phase. If the knowledge learned in the acqui-
sition phase was preserved, then accuracies at the beginning
of the reacquisition phase should be similar to those at the
end of the acquisition phase (i.e., fast reacquisition).

Because both the Crossley et al. and Trask et al. explana-
tions focused on reinforcers, we analyzed brain–related ac-
tivity when the participants were processing the feedback. If
the Crossley et al. model is correct, we expected to see dif-
ferences in blood oxygen–level dependent (BOLD) activity
between the acquisition and extinction phases in conditions
where fast reacqusition is observed (e.g., when the extinction
feedback is random). This is because a change in context has
been detected, which protects the learned associations and
prevents unlearning. If the Trask et al. (2015) explanation
is correct, we expected to see differences in BOLD activity
between the extinction and reacquisition phases in conditions
where fast reacqusition is observed. This is because the reac-
quisition phase has been detected as a new context (compared
to the extinction phase). As a result, the behavior that was in-
hibited during the extinction phase is no longer inhibited and
resurges.
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Most of the fMRI work in perceptual categorization so far
has focused on stimulus processing; not feedback. However,
previous cognitive work suggests that the main components
of category learning are related to selective attention (e.g.,
which stimulus features are diagnostic: Ashby et al., 1998;
Nosofsky, 1986; Shamloo & Hélie, 2020) and response se-
lection (e.g., which response button is associated with which
category: Cantwell, Crossley, & Ashby, 2015). As a re-
sult, we hypothesized that learning–related feedback activ-
ity would be located in the frontoparietal attention network
(e.g., dorsolateral prefrontal cortex (PFC), posterior parietal
cortex: Scolari, Seidl-Rathkopf, & Kastner, 2015).

Materials and methods

This experiment is based on the paradigm developped by
Crossley et al. (2013). However, the present experiment
lasted only one session (instead of two) and used an fMRI
design. To allow participants to learn the categories in only
one session, the category structures used were more easily
discriminable then in Crossley et al..

Participants

Forty students from Purdue University were recruited to
participate in this experiment (7 males; 33 females). Twenty
participants were randomly assigned to the random (RND)
condition while the remaining 20 participants were assigned
to the partially–valid (PV) condition. Each participant re-
ceived credits as partial completion of a course and gave
written informed consent. All procedures were approved
by the Purdue University Biomedical Institutional Review
Board #1403014655.

Stimuli and apparatus

The stimuli were lines of various lengths and orientations
backprojected on a mirror attached to a head coil using a Hy-
perion HD 1080p projector (1, 920 × 1, 080 resolution). In
each trial, one black line was shown in the middle of the
screen. Each stimulus (line) was defined in a 2D space by
a set of points (length, orientation) where length was cal-
culated in pixels, and orientation (counterclockwise rotation
from horizontal) was calculated in degrees.

The category structures used for both training conditions
are shown in Figure 1. There were four separate categories
generated using bivariate normal distributions with the ran-
domization technique (Ashby & Gott, 1988). The cate-
gories were arbitrarily labeled with letters A–D. Only the
mean length and orientation differed across categories, so
that µA = (84, 128), µB = (128, 172), µC = (128, 84), and
µD = (172, 128). The covariance matrix for all categories
was Σ = ( 60 0

0 60 ). In each trial one set of coordinates was gen-
erated from one of the four category distributions, and the co-
ordinates were linearly transformed as follows: lengthdisp =

Figure 1. Category structures used in the Experiment. The
x–axis corresponds to the length of the lines (in pixels) and
the y–axis corresponds to the rotation angle of the lines (in
degrees, counterclockwise from horizontal). Symbols denote
different categories.

4 × lenghtsamp, and angledisp = 1.5 × anglesamp − 60. These
corrections to the coordinates were made to accomodate the
projector’s high resolution and distance. Each set of trans-
formed coordinates was used to draw a line of the specified
length and with the specified rotation angle.

A single set of 600 stimuli was generated from these dis-
tributions (i.e., 150 stimuli from each category), and the stim-
ulus set was linearly transformed so that the sample mean
and covariance of each category matched the parameters of
the generative distributions. The resulting set of stimulus co-
ordinates is shown in Figure 1. The stimulus set was inde-
pendently shuffled for each participant.

Stimulus presentation, feedback, and response recording
were controlled and acquired using PsychoPy. Responses
were produced by using two MR–compatible Celeritas but-
ton boxes (one in each hand, with three buttons on each box).
The left button in the left hand corresponded to an “A” re-
sponse, the right button in the left hand corresponded to the
“B” response, the left button in the right hand corresponded
to the “C” response, and the right button in the right hand
corresponded to the “D” response. The middle button in each
hand was not used.

Visual feedback was given for a correct (a green check-
mark) or incorrect (a big red “X”) response. If a response
was too late, participants saw an hourglass. During the whole
experiment, the screen background was gray.
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Study design

The experiment was composed of 6 blocks of 100 trials
(for a total of 600 trials), and each stimulus was shown only
once. Participants were told they were taking part in a cate-
gorization experiment and that they had to assign each stim-
ulus into either an “A”, “B”, “C”, or “D” category. The in-
structions were the same in both conditions and there was no
mention of the different phases.

The first two blocks was the acquisiton phase and par-
ticipants received valid feedback in every trial. If partici-
pants pressed the button corresponding to category “A” and
the stimulus was from category “A”, they received positive
feedback. Otherwise they received negative feedback. The
same applied to all other categories. Blocks 3–4 was the ex-
tinction phase. During this phase, participants in the RND
condition received random feedback in every trial. In other
words, the feedback received was not contingent on the but-
ton they pressed; they received positive feedback in 25% of
the trials and error feedback in all other trials, regardless of
which button they pressed. The order of positive and error
feedback was individually shuffled for each participant.

During the extinction phase, participants in the PV con-
dition received valid feedback (contingent on their response)
in 25% of the trials and random feedback (not contingent on
their response) in the remaining 75% of the trials. In other
words, positive or error feedback was dependent on which
button they pressed in 25% of the trials but independent of
which button they pressed in the other 75% of the trials. Half
the invalid feedback trials showed positive feedback while
the other half showed error feedback. Valid and invalid feed-
back trials in the PV condition were shuffled individually for
each participant.

Lastly, Blocks 5–6 was the reacquisition phase. The reac-
quisition phase was indentical to the acquisition phase and
the same for both conditions – i.e., participants in both con-
ditions received feedback contingent on their response in all
trials. Importantly, nothing indicated changes in phase in any
condition. The task was presented to participants as if they
were doing the same categorization task for all six blocks.

The rapid–event related design had three types of events:
(1) stimulus presentation, (2) feedback presentation, and (3)
crosshair. The timing of a trial [scaled in repetition time
(TR), 1 TR = 720 ms] went as follows: (1) a response–
terminated stimulus was presented for 3 TR. If the partici-
pant responded in less than 3 TR, the stimulus disappeared
and was replaced by a blank screen for the remainder of the 3
TR. Next, feedback was presented for 1 TR. The number of
blank TR between stimulus and feedback was jittered using
a truncated geometric distribution (p = 0.5; max TR = 3)
(Ashby, 2019), and the number of blank TR between feed-
back and the next stimulus was also jittered using a truncated
geometric distribution (p = 0.5; max TR = 5). When more
than 1 blank TR was presented between feedback in trial t

Figure 2. Experimental procedures. The top row shows an
example trial with positive feedback while the bottom row
shows an example trial with error feedback. The stimulus
was response–terminated and presented for a maximum of 3
TR, while the feedback and crosshair (when shown) lasted 1
TR. 1 TR = 720 ms.

and the stimulus in trial t+1, a fixation cross was shown for 1
TR immediately before stimulus presentation (replacing the
last blank TR, so that there was always at least 1 blank TR
between the feedback and the next stimulus). The crosshair
was shown on an average of 48% of the trials. A schematic
showing trials with positive and error feedback is shown in
Figure 2.

Neuroimaging

A rapid event–related design fMRI procedure was used
to examine BOLD signal as participants categorized visual
stimuli. The scanning session was conducted at the Pur-
due Life Science MRI Facility using a 3T Siemens Prisma
scanner with a 64–channel head coil. Each block in the
experiment used a separate scan. Functional runs used the
lifespan HCP multiband echo–planar images (EPI) sequence
(S. M. Smith et al., 2013). The sequence parameters were as
follow: multiband acceleration factor: 8; TR: 720 ms; echo
time (TE): 30 ms; flip angle (FA): 52◦; field of view (FOV):
210 mm. Each volume consisted of 72 slices acquired par-
allel to the static magnetic field (z–direction) and each slice
was a matrix of 104 × 104. The resulting voxels where 2 mm
isotropic. Each functional run had a different number of TR
(because of jittering) but lasted about 8 minutes.

Before the beginning of the experiment, a regular localizer
was run, and after the experiment a T1–weighted MPRAGE
(TR = 2,300 ms; TE = 2.98 ms; FA = 9◦; 176 sagittal slices;
1.1 mm thick; 1 mm × 1 mm in–plane resolution; 256 ×
256 matrix) high–resolution structural scan was run. Each
scanning session lasted about 60 minutes. The experimenter
talked with the participant between each scan, and the par-



THE EFFECT OF FEEDBACK CONTINGENCY 5

ticipant was allowed to take a break between each scan (but
not to exit from the scanner). These manipulations were de-
signed to minimize fatigue and monotony.

Neuroimaging analysis

Preprocessing and data analysis were conducted using
FEAT (FMRI Expert Analysis Tool) version 6.00, part of
FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki). Preprocess-
ing was done separately on each EPI scan to reduce sources
of noise and artifact, including motion correction using
MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002),
BET brain extraction (S. Smith, 2002), and spatial smooth-
ing with a FWHM of 3 mm and a high pass temporal filter
with a cutoff of 100 seconds. Each functional scan (EPI)
was linearly aligned with the participant’s structural scan
and a non–linear transformation was used for normaliza-
tion to the MNI152_1mm_brain template. Each scan was
micro–scrubbed using fsl_motion_outliers with default
settings. This created a nuisance regressor for each TR in
which motion was excessive (as automatically determined by
the micro–srubbing procedure).

Univariate analyses. First, low–level analyses were
performed separately on each EPI scanning block (6 per par-
ticipant). Three events were defined: Stimulus, Feedback,
and Crosshair. For the treatment blocks in the PV condi-
tion, the Feedback event was replaced by two separate events,
namely Valid Feedback and Invalid Feedback. The stimulus
and feedback events from trials where the participants failed
to respond before the stimulus disappeared were removed
from all neuroimaging analyses. Each event was modeled
by a separate regressor and convolved with a double–gamma
haemodynamic response function. A temporal derivative and
temporal filtering were added to the design matrix. The
contrast of interest was Feedback > Stimulus. In the treat-
ment blocks of the PV condition there were two contrasts of
interest: Valid Feedback > Stimulus and Invalid Feedback
> Stimulus. However, no difference was detected between
these two contrasts so they were averaged together in the fol-
lowing mid–level analyses. Crosshair was used as a nuisance
regressor.

Second, the results of the low–level analyses were input
into mid–level analyses to aggregate the individual blocks
from the same phase. This produced three brain maps for
each participant: (1) acquisition phase (average of Blocks 1
and 2), (2) extinction phase (average of Blocks 3 and 4), and
(3) reacquisition phase (average of Blocks 5 and 6). Both
the low– and mid–level analyses used fixed effects model-
ing. Next, three high–level analyses were performed us-
ing the output of the mid–level analyses as input. Analy-
sis 1 (A1) was a within–subject analysis that compared the
different phases of participants in the RND condition (i.e.,
Acquisition vs. Extinction, Acquisition vs. Reacquisition,
and Extinction vs. Reacquisition). Analysis 2 (A2) was a

within–subject analysis that compared the different phases of
participants in the PV condition (same as A1 but in the other
condition). Analysis 3 (A3) was a between–subject analysis
that compared each phase between condition (Acquisition:
RND vs. PV; Extinction: RND vs. PV; Reacquisition: RND
vs. PV). The high–level analyses used random effects mod-
eling (FLAME 1+2) with a threshold value of Z > 3.71902
and cluster–size correction of p < .05.

Multivariate pattern analyses. A multivariate pattern
analysis (MVPA) was performed to investigate if patterns
of activity in the inferior parietal lobules (IPL) and superior
parietal lobules (SPL) could be used to classify the various
phases and conditions in the experiment. While the univari-
ate analyses described above tested for the hypothesis that in-
dividual voxels behave differently in the experimental phases
and conditions, the MVPA tested instead for the hypothesis
that distributed patterns of activity differed between the ex-
periment phases and conditions. Given that complex cogni-
tive functions are unlikely to be supported by individual vox-
els, but instead a distributed pattern of activities, the MVPA
may provide a better test of our hypotheses.

The IPL and SPL were selected as seed regions of inter-
ests (ROI) based on our hypothesis about the important role
of posterior parietal cortex in learning–related feedback pro-
cessing and the results from the univariate analyses. First,
we created anatomical masks of the ROIs using the Harvard–
Oxford Structural Atlas applied to the MNI152_1mm_brain
template. The IPL mask was created by adding the supra-
marginal gyrus (anterior), supramarginal gyrus (posterior),
and the angular gyrus. The SPL mask was created by taking
the superior parietal lobule. Both masks were bilateral and
thresholded at 50. These masks were applied to the output of
each participant’s mid–level univariate analyses. As a result,
the inputs to the MVPA were one IPL brain map of z–values
for each participant in each phase of the experiment, and one
SPL brain map of z–values for each participant in each phase
of the experiment.

For each analysis, we used a linear support vector ma-
chine (SVM) with leave–one–out cross–validation. In leave–
one–out cross–validation, the SVM is trained using all the
brain maps except for one, and the resulting trained model is
then used to classify the brain map that was left out at train-
ing. This process is repeated until each brain map has been
excluded once, and prediction accuracies are then averaged.

The following analyses were performed: (1) predicting
phase for each brain map in the RND condition; (2) pre-
dicting phase for each brain map in the PV condition; and
(3) predicting condition using brain maps from individual
phases. Each individual SVM was used to perform a bi-
nary classification, so chance performance for each SVM
was 50% correct classification. We used a binomial dis-
tribution with Bonferroni correction for multiple–testing to
find a classification threshold that was statistically signifi-
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cant above chance (p < .05). Classification accuracy above
67.5% was considered statistically significant above chance.
All MVPA were run using in–house code written in Matlab.

Results

Behavioral results

Participants in both conditions learned the categories and
improved their response accuracy in the acquisition phase
from an average of 27% correct in the first 50 trials to 43.2%
correct in the last 50 trials of that phase. The full learning
curves are shown in Figure 3 (left panel). Because fast reac-
quisition is most clearly seen at the beginning of the reac-
quisition phase (Crossley et al., 2013), the critical test to de-
termine if the modified paradigm was able to eliminate fast
reacquisition is a within–subject comparison between the last
50 trials of the acquisition phase and the first 50 trials of the
reacquisition phase. This comparison is shown in the right
panel of Figure 3. Finding a significant reduction in accuracy
between the end of the acquisition phase and the beginning
of the reacquisition phase would provide evidence that fast
reacquisition was eliminated. As predicted by the explana-
tions reviewed in the Introduction, there was no statistical
difference in accuracies between the end of the acquisition
phase and the beginning of the reacquisition phase in the
RND condition [t(19) = 0.9, p = .38, BF01 = 3.01]. The
mean accuracy difference in the RND condition was 0.03.
The Bayes factor indicates that the null hypothesis (i.e., the
absence of unlearning) was three times more likely then the
alternative hypothesis. This is consistent with the presence of
fast reacquisition in the RND condition: participants quickly
picked up where they left off at the beginning of the reacqui-
sition phase. However, this accuracy difference was statisti-
cally significant in the PV condition [t(19) = 2.38, p < .05,
BF10 = 2.21]. The mean accuracy difference in the PV
condition was 0.07. The Bayes factor indicates that the al-
ternative hypothesis (i.e., the presence of unlearning) was a
over twice as likely then the null hypothesis. This suggest
that participants needed to relearn the categories. These re-
sults replicated the elimination of fast reacquisition in the
partially–valid feedback condition first observed by Crossley
et al. (2013).

Neuroimaging results

Within–subject analyses. Analysis A1 explored the ef-
fect of phase in the RND condition. The goal of this analy-
sis was to determine which brain areas process the feedback
differently in the various phases of the experiment. As a re-
minder, no instruction was provided to the participants about
experiment phases: the experiment was presented as a con-
tinuous six block category learning experiment. In total, six
contrasts were computed: (1) Acquisiton > Extinction, (2)
Acquisition > Reacquisition, (3) Extinction > Reacquisition,

(4) Acquisiton < Extinction, (5) Acquisition < Reacquisition,
and (6) Extinction < Reacquisition. Of these six contrasts,
only Acquisition > Reacquisition (Contrast 2) yielded statis-
tically significant clusters. The cluster locations are listed in
Table 1 and shown in Figure 4.

As can be seen, most of the active clusters were located in
the bilateral SPL and occipital cortices, with a small amount
of activity also located in the cerebellum and the right IPL.
Both the SPL and IPL are part of the frontoparietal network
(Scolari et al., 2015), and the SPL (where the larger clus-
ters are located) has been shown to play an important role
in top–down attentional orienting (Shomstein, 2012). At-
tentional orienting is a critical aspect of category learning
(Hélie, Shamloo, & Ell, 2017; Shamloo & Hélie, 2020). Be-
cause the behavioral results were consistent with the pres-
ence of fast reacquisition in the RND condition, there may
have been limited learning during the reacquisition phase,
so most of the attention learning likely happened during the
acquisition phase.

The second within–subject Analysis (A2) explored the ef-
fect of phase in the PV condition. The goal and contrasts
were the same as in Analysis A1. Three within–subject con-
trasts yielded statistically significant clusters in the PV con-
dition: Acquisition > Extinction (Contrast 1), Acquisition >

Reacquisition (Contrast 2), and Extinction < Reacquisition
(Contrast 6). The cluster coordinates for these three contrasts
are listed in Table 2. The clusters for Acquisition > Extinc-
tion (red/yellow) and Extinction < Reacquisition (blue) are
also shown in Figure 5. Because all the clusters for the Ac-
quisition > Reacquisition contrast were located in the occipi-
tal lobe, and we did not have any strong hypothesis about the
role of these regions in the current task, these clusters are not
shown in the Figure.

As can been seen in the middle and bottom rows of Fig-
ure 5, both the acquisition and reacquisition phases showed
clusters located in the left IPL (part of the frontoparietal net-
work) where BOLD signal was higher compared to the ex-
tinction phase. The acquisition phase also showed caudate
activity when compared to the extinction phase (top row of
Figure 5). The IPL has been shown to be related to rule
switching (Philipp, Weidner, Koch, & Fink, 2013) directed
by a top–down attentional signal (Shomstein, 2012). This
is consistent with participants switching between categoriza-
tion rules in the acquisition and reacquisition phases (Hélie,
Shamloo, Zhang, & Ell, 2021). The caudate activity found
in the acqusitiion phase is consistent with the hypothesis–
testing phase when initially acquiring categorization rules
(Hélie, Roeder, & Ashby, 2010).

Between–subject analyses. Analysis A3 compared the
two conditions (i.e., RND vs. PV) within each phase. In
total, six contrasts were computed: (7) Acquisition: RND >

PV, (8) Acquisition: RND < PV, (9) Extinction: RND > PV,
(10) Extinction: RND < PV, (11) Reacquisition: RND > PV,
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Figure 3. Left. Mean accuracy for each block in each condition. Right. Mean accuracy difference between the last 50 trials of
the acquisition phase and the first 50 trials of the reacquisition phase. Error bars in both panels are between–subject standard
error of the mean. A = acquisition phase; R = reacquisition phase.

Table 1
Analysis A1 (RND): Acquisition > Reacquisition

Coordinates

Cluster Size p Max(Z) x y z Brain regions
1 4,663 < .0001 7.23 15 -81 6 R. Intracalcarine cortex
2 391 < .0001 5.54 17 -65 55 R. Superior parietal lobule (posterior)
3 272 < .0001 5.10 -22 -58 1 L. Lingual gyrus
4 221 < .0001 4.89 -10 -76 49 L. Superior parietal lobule (posterior)
5 173 .0003 4.75 -21 -85 -14 L. Occipital fusiform gyrus
6 155 .0006 4.78 -25 -76 -14 L. Occipital fusiform gyrus
7 150 .0007 4.73 26 -61 54 R. Superior parietal lobule (anterior)
8 136 .0014 4.61 -28 -69 53 L. Superior parietal lobule (anterior)
9 118 .0034 4.89 12 -79 44 R. Precuneus

10 83 .0224 4.67 41 -58 -24 R. Cerebellum
11 75 .0356 4.67 41 -38 67 R. Postcentral gyrus
12 72 .0425 5.31 -27 -70 -23 L. Cerebellum
13 70 .0479 4.47 58 -38 53 R. Inferior parietal lobule

and (12) Reacquisition: RND < PV. Only two of these con-
trasts yielded statistically significant clusters, namely (Con-
trast 10) (Extinction: RND < PV) and (Contrast 12) (Reac-
quisition: RND < PV). The fact that no difference was found
between the conditions during the Acquisition phase (Con-
trasts 7 and 8) served as a sanity check in that no manipula-
tion had been introduced yet, so participants in both condi-
tions were doing the same task and had the same experience
so far in the experiment. We found no evidence that partic-
ipants’ brains processed the feedback differently in the two
conditions during that phase.

The cluster coordinates for Extinction: RND < PV are

listed in Table 3 and shown in Figure 6. Because the first
cluster is large (> 30,000 voxels), the peaks of this cluster
are listed separately in Table 4. As can be seen, this contrast
yielded by far the most widespread BOLD activity, with sev-
eral clusters located in the frontal and parietal lobes. Smaller
clusters of activity were also found in the occipital and tem-
poral lobes.

First, similar to the results of Analyses A1 and A2, the
parietal lobe showed bilateral activity in both the IPL and
SPL. These brain areas were more active during extinction
in the PV condition when compared to the RND condition.
This is consistent with the top–down attentional roles of the
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Figure 4. BOLD clusters for Analysis A1 (RND): Acquisition > Reacquisition. The slices shown range from z = −25 to
z = 68 from left to right and top to bottom by jumps of 2.6. Cluster coordinates are listed in Table 1.

IPL and SPL that has been noted previously. Fast reacqui-
sition was eliminated in the PV condition. If the absence of
fast reacquisition was caused by unlearning (Crossley et al.,
2013), participants may have continued trying to learn or ad-
just their categorical knowledge during the extinction phase
by updating their attentional control to the different stimulus
features. In contrast, behavioral results were consistent with
the presence of fast reacquisition in the RND condition, sug-
gesting that participants may have disengaged from the task
and not used the feedback provided to update their categori-
cal knowledge.

Second, a number of clusters of BOLD activity were lo-
cated in the frontal lobes. Note that we did not observe
frontal activity in the within–subject analyses (A1 and A2),
but this constitutes the other half of the frontoparietal net-
work (Petersen & Posner, 2012; Vossel, Geng, & Fink,
2014). The observed activity was bilateral and included both
areas of the ventral and dorsal PFC. The PFC plays an im-
portant role in category learning and working memory (WM)
(Ashby, Ell, Valentin, & Casale, 2005). These results are
again consistent with participants in the PV condition trying
to use feedback to update their category representations dur-
ing extinction. In contrast, participants in the RND condition
did not seem to process feedback as much, which may ex-
plain why their categorical knowledge remained mostly in-
tact at the end of the extinction block.

Third, Table 3 also shows one cluster (15) located in the
right temporal gyrus. The only cluster found in Contrast 12

(Reacquisition: RND < PV) was also located in the right
temporal gyrus (size = 132, p = .0062,Max(Z) = 5.26, x =

68, y = −19, z = −15). Similar to occipital cortex, we did
not have any strong a priori hypothesis about the role of the
temporal lobe in this task. The cluster in Contrast 10 appears
to be located in areas typically related to vision while the
cluster in Contrast 15 is located in areas typically related to
the auditory systems. These results were included for com-
pleteness but need to be interpreted with care since they did
not test any hypothesis that we had a priori.

MVPA. The MVPA were run to determine if z–values
from the univariate analyses located in the IPL and SPL
could be used to classify brain maps into the correct con-
dition (i.e., RND vs. PV) or experimental phase (i.e., Ac-
quisition vs. Extinction vs. Reacquisition). Table 5 shows
the proportion of phases that were correctly predicted using
data from the IPL and SPL. As can be seen, both the IPL and
SPL could classify brain maps comparing the extinction and
reacquisition phases accurately. This suggests that both these
brain areas process the feedback differently when it becomes
reliable again in the reacquisition phase after the extinction
phase. This result is consistent with the context change ex-
planation of resurgence from the rodent literaure (Trask et
al., 2015). In addition, the IPL was able to distinguish be-
tween the acquisition and extinction phases, but only in the
RND condition. This result is consistent with the Crossley
et al. (2013) model suggesting that participants could detect
a change in context between these phases in the RND con-
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Table 2
Analysis A2: PV condition

Coordinates

Cluster Size p Max(Z) x y z Brain regions

Acquisition > Extinction
1 168 .0004 4.62 -40 -68 50 L. Inferior parietal lobule
2 90 .0181 4.68 18 -12 26 R. Caudate
3 76 .0394 4.69 -11 -73 -8 L. Lingual gyrus

Acquisition > Reacquisition
1 3,579 < .0001 5.72 -14 -73 11 L. Intracalcarine cortex
2 679 < .0001 5.32 11 -100 -1 R. Lingual gyrus / Occipital pole
3 196 .0002 4.94 -8 -85 0 L. Intracalcarine cortex
4 170 .0004 4.43 33 -91 -6 R. Lateral occipital cortex, inferior

division
5 131 .0023 5.41 -30 -87 -19 L. Occipital fusiform gyrus

Extinction < Reacquisition
1 111 .0060 4.80 -48 -71 41 L. Inferior parietal lobule

dition but not the PV condition. Lastly, the IPL could also
distinguish between the acquisition and reacquisition phases,
but only in the PV condition. Earlier explanations did not
directly address the relationship between the acquisition and
reacquisition phases but the fact that accurate classification
was only achieved in the PV condition is noteworthy (we
come back to this result in the Discussion section). Lastly,
Table 6 shows the IPL’s and SPL’s ability to classify brain
maps in the two conditions within each phase. As can be
seen, the MVPA was unable to predict condition in any of
the phase.

Discussion

This article explored how manipulations of feedback con-
tingencies could affect the ability to unlearn a skill. Crossley
et al. (2013) previously showed that using partially–valid
feedback in an extinction paradigm could eliminate fast reac-
quisition, which they interpreted as evidence of unlearning
of the category representations learned during the acquisi-
tion phase. We reported results from a fMRI experiment that
was closely inspired by the work of Crossley et al. (2013).
The behavioral results replicated those found by Crossley et
al. in that using partially–valid feedback during the extinc-
tion phase eliminated fast reacqusition whereas using ran-
dom feedback during the extinction phase was consistent
with the presence of fast reacquisition.

The main novelty of the new experiment was the inclusion
of the fMRI component. As predicted, feedback processing
yielded a number of significant clusters in posterior parietal
cortex (mostly in the IPL and SPL) and the PFC. This result

was strongest in univariate analysis A3, where the PV con-
dition showed much stronger activation in the whole fron-
toparietal attentional network compared to the RND condi-
tion during the extinction phase. However, the main goal of
the experiment was to determine if the presence of fast reac-
quisition was caused by a change of context between the ex-
tinction and reacquisition phases (as suggested by the rodent
literature: Trask et al., 2015) or a change of context between
the acquisition and extinction phases (Crossley et al., 2013).
We found mixed results for both mechanisms.

The univariate analysis A2 showed more IPL and caudate
activity during the acquisition phase compared to the extinc-
tion phase in the PV condition. This result is problematic
for the Crossley et al. model, since participants in that con-
dition should have failed to detect a change in context and
continue processing feedback to update their category rep-
resentations during extinction (thus producing unlearning).
Second, univariate analysis A2 also showed more IPL ac-
tivity in the reacquisition phase compared to the extinction
phase in the PV condition. This result is problematic for the
Trask et al. explanation: the category representations learned
during the acquisition phase should have been inhibited in
the extinction context only, so detecting the context change
in the reacquisition phase should lead to fast reacquisition
(which was not observed in the PV condition).

The univariate results described above were further in-
formed by results from the MVPA. First, the IPL was able to
classify brain maps from the RND condition into the acqui-
sition or extinction phase; this classification failed in the PV
condition. This is consistent with the Crossley et al. (2013)
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Figure 5. BOLD clusters for Analysis A2 (PV): Acquisition > Extinction (red/yellow) and for Analysis A2 (PV): Extinction
< Reacquisition (blue). The first row shows caudate activity while the middle and bottom rows show IPL activity. Each row is
centered on the Max(Z) coordinates for their respective cluster as listed in Table 2.

model which suggests that the change of context is only de-
tected in the RND condition. According to this model, the
failure in detecting the change of context in the PV condition
produces unlearning. Second, the MVPA showed that both
the IPL and SPL could classify brain maps in the extinction
or reacquisition phase in both conditions. This is consistent
with Trask et al. (2015)’s explanation that the extinction and
reacquisition phases are treated as different context. The ac-
curate classification in the RND condition is consistent with

the presence of fast reacquisition (or resurgence) in that con-
dition, but the accurate classification in the PV condition is
inconsistent with the absence of fast reacquisition in that con-
dition. Detecting the change in context in the PV condition
should have led to fast reacquisition.

One intriguing result of the MVPA is that the IPL was
able to classify brain maps in the acquisition or reacquisition
phases, but only in the PV condition. While the Trask et
al. (2015) explanation does not directly address the relation-
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Table 3
Analysis A3: Extinction: RND < PV

Coordinates

Cluster Size p Max(Z) x y z Brain regions
1 38,292 < .0001 8.72 -50 -39 59 See Table 4
2 810 < .0001 6.93 -54 12 32 L. Precentral / Inferior frontal (pars opercularis)

gyri
3 609 < .0001 7.26 -29 -5 69 L. Superior frontal / precentral gyri
4 513 < .0001 6.94 -14 -77 40 L. Precuneus cortex
5 360 < .0001 6.07 -44 -70 3 L. Lateral occipital cortex, inferior division
6 296 < .0001 5.14 52 -67 15 R. Inferior parietal lobule
7 283 < .0001 5.79 64 -27 24 R. Supramarginal gyrus, anterior division / Infe-

rior parietal lobule
8 270 < .0001 7.30 31 -4 66 R. Superior frontal gyrus
9 236 .0002 6.30 -42 -77 17 L. Inferior parietal lobule
10 230 .0002 4.84 0 -37 52 Superior parietal lobule
11 215 .0003 6.04 15 -32 41 R. Superior parietal lobule
12 192 .0007 5.33 47 31 18 R. Inferior frontal gyrus, pars triangularis
13 191 .0007 4.96 19 -55 -14 R. Lingual gyrus / cerebellum
14 157 .0023 4.78 -52 23 36 L. Middle Frontal Gyrus
15 145 .0037 4.75 51 -60 -7 R. Inferior temporal gyrus, temporooccipital part
16 131 .0065 5.30 -14 -35 45 L. Superior parietal lobule
17 119 .0107 4.84 -8 -26 44 L. Cingulate gyrus, posterior division
18 108 .0172 5.38 -39 -3 16 L. Central opercular cortex
19 106 .0188 6.28 45 -76 16 R. Lateral occipital cortex, superior division
20 100 .0246 4.43 43 -39 62 R. Superior parietal lobule
21 100 .0246 5.18 38 -38 58 R. Postcentral gyrus
22 97 .0282 4.73 -33 36 44 L. Middle Frontal Gyrus
23 96 .0295 6.13 1 -77 10 R. Supracalcarine / intracalcarine cortex
24 96 .0295 4.46 16 -48 -48 R. Cerebellum
25 86 .0468 4.88 38 -43 -28 R. Cerebellum

Note. Local maxima for Cluster 1 are shown in Table 4.

ship between the acquisition and reacquisition phases, the
Crossley et al. model implicitely assumes that the reacqu-
sition phase context is sufficiently similar to the acquisition
phase context to bring back the earlier learned associations
(hence the fast reacquisition). The fact that reacquisition
is treated differently then acquisition by the IPL in the PV
condition could show that the categorization problem in the
reacquisition phase is treated as a new problem from the ac-
quisition phase instead of being a return to the original cate-
gorization problem. This would be expected if the informa-
tion learned during the acquisition phase has been unlearned.
However, another possibility is that fast reacquisition was
not observed in the PV condition not because unlearning oc-
cured, but instead because the reacquisition context failed to
be identified as being the same as the acquisition context.
The present experiment was not designed to distinguish be-
tween these two possible interpretations, but future researh
could directly address this issue by explicitly cueing the con-
text in the various phases of the experiment (e.g., by associ-

ating phases with background colors).

Overall, the present research found evidence for the im-
portance of changes in context both between the acquisition
and extinction phases, as well as between the extinction and
reacquisition phases. The key to disentangling the effects
of these two changes in context may be to treat unlearning
and fast reacqusition as separate concept: the presence of un-
learning necessarily prevents fast reacquisition (because the
knowledge has been “erased”), but the absence of fast reac-
quisition is not necessarily indicative of unlearning. More re-
search is needed to establish a more stringent test of unlearn-
ing using an observed phenomenon instead of the absence of
a phenomenon.
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Figure 6. BOLD clusters for Analysis A3 (Extinction: RND < PV). The slices are the same as in Figure 4. Cluster coordinates
are listed in Tables 3 and 4.

Table 4
Local maxima in Cluster 1 from Table 3

Coordinates

Maximum Max(Z) x y z Brain regions

1 8.72 -50 -39 59 L. Postcentral gyrus
2 7.92 -58 -21 42 L. Postcentral gyrus
3 7.87 -25 -72 44 L. Lateral occipital cortex, superior division
4 7.80 -56 -22 42 L. Postcentral gyrus
5 7.78 -24 -73 47 L. Lateral occipital cortex, superior division
6 7.48 -25 -71 46 L. Lateral occipital cortex, superior division

Data Availability

The data and materials for the experiment are available by
contacting the corresponding author.
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