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Abstract 

Performing an action often incurs a cost, such as exerting effort for a reward. Previous 

studies used the Effort Expenditure for Reward Task (EEfRT) to show devaluation of reward with 

physical effort. However, it is unclear if a similarly structured attentional task would produce a 

similar devaluation with cognitive effort. In the present work, we propose a new task called the 

“shell game task” (SGT) as a cognitive effort-based decision-making paradigm. Participants 

performed both the EEfRT and SGT in a within-subject design. Using computational models of 

choice behavior, we showed that effort cost induced by the variability of task demands in the SGT 

is similar to the effort cost from the existing EEfRT in the devaluation of a given outcome in action 

choice selection. This result suggests that effort cost may be a stable idiosyncratic trait across the 

two tasks and shows how computational approaches can be used to estimate and compare measures 

of effort. In addition, the results suggest that the SGT can be used as an alternative to the EEfRT 

with subject populations with motor deficits. 
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1. Introduction  

In everyday life, people encounter different situations where decisions regarding the course 

of actions to obtain a reward need to be made. These decisions often incur a cost, such as patience 

or effort to obtain a reward. Sayings like “no pain no gain” are common, and as a result, people 

often deliberate if a reward is worth working for. Such decisions can be simple, like debating if 

one should make the physical effort to walk to the refrigerator to get a favorite snack. In more 

difficult cases, the process of achieving a goal may be tiring, for instance, working out daily to get 

your body toned. It is easy to give up when a great amount of effort is required. Moreover, it is 

hard to even initiate actions when anticipating the work needed over time. 

When facing effortful actions, one often estimates the costs and benefits of available 

options and selects the most beneficial response in a given circumstance (Rangel, Camerer, & 

Montague, 2008). In decision-making, effort is regularly regarded as a principle cost, whereby 

effort discounting devalues rewards by decreasing the utility of related outcomes (Botvinick et al., 

2009; Kool et al., 2010; Kurniawan et al., 2010). Thus, when available options include choices 

with high effort costs, the choice can become less appealing (Iyengar & Lepper, 2000; Kool et al., 

2010).  

Apart from physical effort, the willingness to engage in cognitively demanding tasks can 

also be characterized by effort cost. The concept of cognitive effort is intuitive as it is accompanied 

by a phenomenological experience in that engaging in a cognitively demanding task “feels” 

different compared to daydreaming. The study of cognitive effort is important because of its impact 

in various scenarios, from arithmetic, problem solving, and rational reasoning (Shah & 
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Oppenheimer, 2008; Toplak et al., 2011), to economic decision-making (Garbarino & Edell, 1997; 

Payne et al., 1988; Shah & Oppenheimer, 2008; Smith & Walker, 1993; Westbrook & Braver, 

2015), and much more. Cognitive effort expenditure may also act as a predictor of academic 

achievements (Arafa et al., 2018; von Stumm et al., 2011) as it can be defined as the amount of 

cognitive capacity allocated to learning and task performance (Arafa et al., 2018; De Jong, 2010). 

The willingness to expand cognitive effort in discounting motivation is a goal-directed behavior 

with its influence in managing cognitive control to reach a valuable goal (Shenhav et al., 2013). 

Moreover, Kool et al. (2010) showed the relevance of the law of less work or the tendency to 

minimize cognitive effort exertion in order to conserve limited cognitive resources. The study 

showed participant’s avoidance of cognitive demand in behavioral experiments where participants 

chose freely between courses of action that involved various demand levels of controlled 

information processing. Participants’ bias to select the less demanding choice changes according 

to the task incentives but were not completely accounted for by the strategic avoidance of errors, 

minimization of time on task, or maximization of rate of goal achievement.  

Effort-based decision-making paradigms are typically carried out to determine how 

physical  or cognitive effort affects the value of a given outcome in action choice selection 

(Treadway & Zald, 2011). The Effort Expenditure for Reward Task (EEfRT) has often been used 

in previous studies to examine effort-based decision-making (Treadway et al., 2009). The EEfRT 

has been used widely to study choice selections that involve varying degrees of physical effort 

allocation for a monetary reward (Gill et al., 2020; Treadway et al., 2009). The EEfRT can be 

presented as a key pressing game, where participants decide on the level of physical effort that 

they are willing to engage in to achieve varying monetary rewards. The reward magnitudes are 

usually presented with differing probability levels for reward receipt. This combination allows for 
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examining how reward magnitude, probability of reward receipt, and expected value modulate 

effort-based decision-making. Studies using the EEfRT show evidence for the avoidance of high 

effort tasks with fixed magnitudes of reward (Kool et al., 2010). In addition, people with 

schizophrenia and major depression often show decreasing tendencies to select high effort options 

to maximize reward in the EEfRT (Barch et al., 2014; Hammar, 2009; Hartlage et al., 1993). Effort 

aversion is often seen in motivational disorders and particularly in neurobiological illnesses with 

dopaminergic dysfunction (Chong & Husain, 2016; Salamone & Correa, 2018), where effort 

deficiency leads to poor performance on cognitively demanding tasks without affecting 

performance in tasks with lower cognitive demands (Cohen et al., 2001; Hammar, 2009; Hartlage 

et al., 1993; Zakzanis et al., 1998). 

Many studies have been carried out to identify the relationship between cognitive and 

physical effort. Białaszek et al. (2017) showed both physical and cognitive effort devalues rewards 

less in lower effort tasks and more in higher effort tasks. Moreover, the ventral striatum has been 

suggested by Schmidt et al. (2012) to be a common motivational node in representing the expected 

reward after effort exertion driving both the cognitive and the physical domains. However, not all 

studies have shown equivalent scaling of cognitive and physical effort. While physical effort 

measured through the EEfRT has been used to compare willingness to expend effort for rewards 

in patients with major depressive disorders and healthy controls (Treadway et al., 2012), adapted 

cognitive effort tasks relying on working memory have failed to discriminate patients with major 

depressive disorders from control groups (Tran et al., 2021). In a study comparing the EEfRT to a 

cognitive set-switching task, participants tend to choose the hard task more often in the cognitive 

task as compared to the EEfRT, even though they perceived the cognitive counterpart to be more 

difficult (Lopez-Gamundi and Wardle, 2018).  



5 

 

The issue with most of the available studies comparing decisions about physical and 

cognitive effort for reward is the failure in direct comparison between the physical and cognitive 

measures. Studies on physical effort typically measure either single sustained or multiple 

accumulated muscle contractions. However, such measures of physical effort is often contrasted 

with cognitive paradigms such as numerical Stroop tasks (Schmidt et al., 2012), memory search 

tasks (Ennis et al., 2013), working memory N-back tasks (Westbrook et al., 2013), set-switching 

tasks (Lopez-Gamundi and Wardle, 2018), and more. These tasks measure avoidance of cognitive 

effort as a free-choice, often measuring the ability to suppress and switch. In contrast, most 

physical effort measures are either repeated or single sustained muscle contractions. As an analogy, 

think about the difference between lifting a heavy weight one time (similar to task switching) vs. 

repeatedly lifting a lighter weight (similar to repeatedly pressing a key). Both tasks are effortful, 

but they are very different. As a result, the lack of translational and parallel measures of physical 

and cognitive effort costs in previous studies may prevent appropriate comparison of effort 

discounting between the two domains. A better alternative for tasks examining cognitive effort 

discounting may be related to attention maintenance, where the effort intensity is a measure of 

maximum voluntary effort sustained over a set temporal duration. Attention maintenance over a 

shorter period requires less sustained effort as compared to the same task over a longer duration, 

similar to the physical counterpart in EEfRT, whereby the smaller number of rapid key presses 

requires less sustained effort than the case when more rapid key presses are required.  

1.1 The proposed cognitive task 

In this article, we propose using a new task called the “shell game task” (SGT) as an 

alternative to the EEfRT. The task requires target trailing by following the movement and position 

of a target. The effort required in the SGT can be adjusted by changing the speed of movement, 



6 

 

duration of movement, and the number of objects in motion. Similar to the key-pressing task in 

the EEfRT, participants can select a hard or easy choice as a function of the reward presented. The 

choice selection reflects the cognitive effort expenditure as a measure of the voluntary mobilization 

of cognitive resources. In the EEfRT, since the task demands varies by changing the intensity and 

duration of sustained effort in the form of the physical work done, the comparison of the choice 

offered is rather straightforward. Similarly, the task demands in the SGT varies in terms of the 

intensity and duration of sustained attention. Thus, the SGT may be more translational to the 

EEfRT. 

1.2 Aim of the study 

The main goal of this experiment was to construct a cognitive effort-based reward-

motivated decision-making task that could be appropriately compared to performance in the 

EEfRT. After creating the task (SGT), our next goal was to demonstrate that willingness to exert 

effort in the SGT would parallel willingness to exert physical effort in the EEfRT. To achieve this 

goal, we first demonstrated the presence of effort discounting in the cognitive paradigm. The effort 

comparison in the same domain is driven by the two levels of task demands. The difference in task 

demands in the same domain differed in terms of the “force” exerted over time. With consistent 

task demand difference throughout the paradigm, we hypothesized that participants would choose 

to exert more effort in both cognitive and physical paradigms when reward motivation was 

sufficiently high. With this, we hypothesized similar motivation discounting with effort when the 

willingness to exert effort was matched in the two domains. The present study focused solely on 

the impact of task demand differences on reward motivation, leaving out the assessment of the 

nature of cognitive and physical demands. In line with the idea that motivating effects of rewards 

can be offset by task demands or reduce the net utility of effort exertion (Apps et al., 2015; Kool 
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et al., 2010; Shenhav et al., 2013), effort cost was computed as the turning point to choose the 

relatively demanding task as reward motivation increased. People choose to work less when the 

reward motivation was less than the effort cost, and choose to work more if the work was 

accompanied with reward motivation that is greater than the effort cost. Thus, the study compared 

the willingness to exert effort to obtain a certain reward in the physical and cognitive paradigms. 

If increasing task demands reduces the motivation to obtain a higher reward in both the proposed 

SGT and the existing EEfRT, the SGT may be deemed an appropriate alternative to the EEfRT. 

 Another goal of this research was to explore if the pattern of effort discounting in the two 

domains would hold when varying the reward-uncertainty combinations as seen in the original 

EEfRT. This was to show task stability with different incentive combinations. As a result, the 

possible changes to effort discounting in cognitive or physical paradigms were investigated 

according to the changes in reward-uncertainty combinations in different risk-reward conditions. 

However, it is also noted that subjective probabilities might not scale linearly; the subjective 

difference in the probability combinations in one risk condition might not be perceived as the same 

as in the other risk conditions, despite the same objective difference between two probabilities 

(Winman et al., 2014). Hence, we speculate a low possibility of changes in choice behavior with 

the adjusted probabilities in the risk conditions given the tendency to underestimate or 

overestimate probabilities or risk in the environment. The study aims can be achieved by (1) 

demonstrating that participants discount motivation with a similar estimated effort cost across the 

two tasks, (2) examining if the two measures are similarly sensitive to changes in reward 

motivation, and (3) testing task stability with different risk-incentive combinations. Moreover, 

through the comparison of the SGT and the EEfRT, this work compared the willingness to exert 

effort for reward in the cognitive and physical domains.  
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2. Methods 

To demonstrate that participants discount motivation with similar effort cost across the two 

tasks and that the two measures are similarly sensitive to changes in reward motivation, we used 

the EEfRT and the new SGT to measure willingness to exert effort with varying rewards. The 

effort cost in the two tasks was compared using computational modelling. 

2.1 Participants 

One hundred twenty-three participants were recruited from the Purdue University 

undergraduate population. Up to 10 participants were recruited for each session of the experiment, 

and the participants were run simultaneously on individual workstations separated by walls. Each 

participant was given credit for participation as partial fulfillment of a course requirement. 

Participants gave written informed consent and all procedures were approved by the Purdue 

University Human Research Protection Program Institutional Review Board. The participants took 

part in the study voluntarily and anonymously. The study was carried out in accordance with the 

Declaration of Helsinki.  

2.2 Materials and Procedure  

Each participant performed both the EEfRT and the SGT in random order of EEfRT-SGT 

(n = 64) and SGT-EEfRT (n = 59). The tasks were displayed in a 21-inch monitor with 1,920 

×1,080 resolution. The experiment was controlled by in-house programs written using PsychoPy 

(Peirce et al., 2019). 

2.3 Effort Expenditure for Reward Task (EEfRT) 

Participants were presented with a white rectangular bar in the middle of the screen, with 

a red starting block in the center and two finishing lines on the ends of the rectangle bar. Upon 

pressing the key ‘b’ on the keyboard, the red block expanded and gradually filled the area of the 
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white bar. The red block expanded after each key press, so that constantly holding the keys would 

not expand the red block. The participants were instructed to repeatedly press the key ‘b’ on the 

keyboard until the red block reached the finish lines. The sequence and timing of the EEfRT is 

shown in Figure 1. 

Figure 1 

Task flow of the EEfRT. 

Note. The reward and win-probability were shown at the start of each trial. After a decision was 

made, the participants were required to perform the key-pressing task within a time limit. Feedback 

on the completion of the task and reward won were then displayed. 

2.4 Shell Game Task 

Participants were presented with three blue squares in the middle of the screen equally 

spaced from each other. One of the blue squares, the target, turned red for 1 second and back to 

blue. The three squares were then “shuffled” on the screen, in which the squares would randomly 

move around on the screen (two at a time) to the three possible target locations multiple times 



10 

 

within the shuffling period. Participants were required to track the target square as it was shuffled 

with the other two distractor squares. Once the shuffling had stopped, the participant was asked to 

choose the final placement of the target square by pressing one of the keys on the keyboard labelled 

“A”, “B”, or “C”. Key “s” on the keyboard was labeled as “A”, key “g” as “B”, and key “k” as 

“C”. The sequence and timing of the SGT is shown in Figure 2. 

Figure 2 

Task flow of the SGT. 

Note. The reward and win-probability were shown at the start of each trial. After a decision was 

made, the participants were required to perform the SGT and feedback on the accuracy and reward 

won was displayed. 

2.5 Common choice structure to both tasks  

Participants underwent 48 trials in both EEfRT and SGT. At the beginning of each trial, 

participants were asked to choose to perform either the hard or easy version of the current task 

(SGT or EEfRT). In the EEfRT, the rate of key presses required was greater in the hard version 
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(100 key presses in 16.5s) as compared to the easy version (30 key presses in 5.8s). In the SGT, 

the hard choices (70 shuffles with displacement of 4 pixels per screen refresh, with 60Hz refresh 

rate) had more shuffles with higher shuffling speed as compared to the easy version (30 shuffles 

with displacement of 3 pixels per screen refresh, with 60Hz refresh rate). The difficulty 

specifications in the tasks were made such that success in the hard version of the tasks was 

achieved in about 85% of the trials, while the easy version yielded success in approximately 95% 

of the trials in pilot experiments. Participants had to make a selection within five seconds, else the 

difficulty level was randomly selected.  

The participants were informed that they would receive monetary rewards according to 

their performance during the experiment and that the rewards would be given at the end of the 

experiment when every participant in the same session was done with both tasks. Rewards for the 

hard choices of the tasks were greater than easy choices. The reward for the hard version of the 

tasks varied from trial-to-trial and ranged from $1.25 to $5.35, while the reward for the easy 

version of the tasks was always $1. The participants were told that they had to accurately complete 

the particular trial to get the reward, but that the reward would not necessarily be granted even 

though they succeeded during the trial. The probability of winning the reward was shown to the 

participants along with the reward at the beginning of each trial when they were given the choice 

to select between the hard and easy versions of the task. The probability of winning the reward 

was the same for both easy and hard rewards for each trial if the task was completed successfully. 

The participants were informed if they had received the reward at the end of each trial. At the end 

of both experiments, two rewards they won from each task were selected randomly, and the sum 

was given to the participants as a monetary compensation.  



12 

 

2.6 Discounting stability across tasks with different risk-incentive combinations 

To achieve our aim in showing task stability with different risk-incentive combinations, 

changes in effort cost in both the motor and cognitive tasks with three risk-incentive conditions 

were examined. The three risk conditions were low (n = 40), medium (n = 43), and high (n = 40). 

The combinations of reward amount and uncertainty of winning the reward were adjusted to match 

the risk-incentives conditions, as shown in Table 1.  It should be noted that each participant only 

performed the experiment under one of the risk conditions, which was randomly assigned to them. 

The probability of winning reward and reward structures in the medium risk conditions 

followed that from the original EEfRT (Treadway et al., 2009).  The low and high risk conditions 

were designed such that the reward probabilities in each condition differed by 0.12 from the 

medium risk condition such that there is a constant difference between the corresponding 

probabilities in all risk conditions and the probabilities are still within the range from 0 to 1. For 

example, the lowest win-probability (i.e., 0.24) in the low risk condition was 0.12 higher than that 

in the medium risk condition (i.e., 0.12). In the high risk condition, the lowest win-probability (i.e., 

0.00) was 0.12 lower than that in the medium risk. With the subtraction of 0.12 from the lowest 

win-probability in the medium risk group, the lowest win-probability in the high risk condition 

was 0, wherein no reward was given to the participants regardless of the choice or the performance 

in trials where the win-probability was 0. With the addition of 0.12 to the greatest win-probability 

in the medium risk group, the greatest win-probability in the low risk condition was 1, wherein 

participants were guaranteed the reward if they managed to perform the task in trials where the 

win-probability was 1. The goal of this manipulation was to explore possible changes in choice 

selection in both tasks, especially in trials where participants were guaranteed reward with good 

performance or if no reward was given regardless of performance.  
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Note that the expected reward was kept constant for all risk conditions, which meant 

pairing higher risk conditions with higher mean rewards. This approach was used to balance the 

change in win-probability with the reward, so that the participants did not get overly motivated in 

the low risk condition or under-motivated in the higher risk condition.  

Table 1 

Reward and win-probability combinations for the three conditions 

 

2.7 Modelling choices 

To determine if the effort cost and decision mechanism was common across the two tasks, 

computational models of choice behavior were fitted to participants’ responses to estimate the 

subjective utility of each offer to individual participants. The subjective utility estimate was a 

linear model that predicted a constant discounting of the expected value of reward as effort 

increased.  

The subjective utility of a hard choice was modelled as: 

𝑈ℎ(𝑡) = 𝑅ℎ(𝑡)𝑝(𝑡) − 𝐸 (1) 

where 𝑅ℎ(𝑡) is the reward offered in trial t for the hard choice, 𝑝(𝑡) is the win-probability in trial 

t if the participant is successful, and  𝐸 is the relative effort cost of the hard choice as compared to 

the baseline option (easy choice). The product of 𝑅ℎ(𝑡) and 𝑝(𝑡) gives the expected value of the 

hard choice in trial t, which represents the value of reward, given the probabilities of winning it 

after a successful trial. 𝐸 is a free parameter representing the relative effort cost of performing the 

Conditions (risk group) Low Medium High 

Win-probability  0.24, 0.62, 1.00 0.12, 0.50, 0.88 0.00, 0.38, 0.76 

Mean reward ($) 2.40 2.98 3.92 
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hard version of the task in comparison to the easy version of the task. When selecting the easy 

choice, the amount of reward was always $1, hence, 𝑅𝑒(𝑡) was set to 1 for the easy selection. With 

𝐸  as the relative effort cost to the baseline option (the easy choice), 𝐸  was set to 0 for the 

computation of the subjective utility of easy choice, so 𝑈𝑒 = 𝑝(𝑡). 

We fitted the subjective utility functions to the choices participants made in each task. The 

subjective utility of each choice offer for each participant was referenced to the subjective utility 

of the baseline offer. The model decision was implemented using a softmax function: 

𝑃𝑟ℎ(𝑡) =
𝑒𝛼𝑈ℎ(𝑡)

𝑒𝛼𝑈𝑒(𝑡) + 𝑒𝛼𝑈ℎ(𝑡)
 

(2) 

where 𝑃𝑟ℎ(𝑡) represents the probability of choosing the hard choice that has a subjective utility of 

𝑈ℎ(𝑡) in trial t, while the easy choice had utility 𝑈𝑒(𝑡); 𝛼 is the inverse temperature of the softmax 

function, which represents the stochasticity of decisions, i.e.,  the sensitivity to the subjective utility 

in a given trial. Maximum stochasticity is obtained when 𝛼 is set to zero, while the randomness 

decreases when 𝛼 increases, indicating a strategy to choose the higher value offer. The probability 

of selecting the easy choice in trial t, Pre(t), was simply 1 – Prh(t). 

We compared the stability of the effort cost of each participant in the two tasks by 

estimating the relative effort cost (𝐸) and the inverse temperature (𝛼). 𝐸 and 𝛼 were estimated with 

five models using the same softmax function. The differences in the models are whether 𝐸 or 𝛼 

were modelled separately for the two tasks or represent a common mechanism (22 + 1 null model 

= 5 models). Table 2 lists the models. 

Table 2 

Model descriptions 

Model Description 
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Model 0 Null model. The model assumes 𝐸 = 0 and 𝛼 = 1 for the two tasks. 

Model 1 The model assumes shared 𝐸 and 𝛼 for the two tasks. 

Model 2  The model assumes shared 𝛼 but separate 𝐸 for the two tasks. 

Model 3 The model assumes shared 𝐸 but separate 𝛼 for the two tasks. 

Model 4 The model assumes separate 𝐸 and 𝛼 for the two tasks. 

 

2.8 Model Comparison 

The model comparison relies on the widely applicable information criterion, also known 

as the Watanabe – Akaike information criterion (WAIC), to account for the differences in the 

number of model parameters. The WAIC assesses the accuracy of a given model to predict the 

entire sequence of choices in one task based on the estimated parameters. Priors used in each model 

are shown in Table 3. Note that priors for Models 1 to 4 were uniformly distributed because 𝐸 and 

𝛼 may be different for each participant and each value from the set range were equally probable. 

Both priors for 𝐸  and 𝛼  starts from zero. The prior for 𝐸  had to cover all reward-probability 

combinations shown to the participants. Priors in 𝛼 doesn’t have a theoretical upper bound, but the 

effect in scaling the subjective utility for choice behavior plateaus and doesn’t change as much as 

𝛼 increases. On the other hand, since Model 0 is built for cases where there is no effort discounting 

and that participants made choice selections with reward-probability just as it is, 𝐸 was tightly and 

normally distributed around 0 whereas 𝛼 was tightly and normally distributed around 1. As a result 

there might be instances where a participant is fitted with a negative effort cost. However, due to 

the small magnitude that is close to zero, such effect is negligible. The model comparison with 

WAIC was done with the map2stan function from the Rethinking package in R. 
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Table 3 

Priors used in each model 

Models  Free parameters  Priors 

Model 0  𝐸 

𝛼 

 𝐸 = 𝑁(0, 0.05) 

𝛼 = 𝑁(1, 0.05) 

Model 1  𝐸 

𝛼 

 𝐸 ~ 𝑈(0, 5) 

𝛼~𝑈(0, 10) 

Model 2  𝐸EEfRT 

𝐸𝑆𝐺𝑇 

𝛼 

 𝐸EEfRT ~ 𝑈(0, 5) 

𝐸𝑆𝐺𝑇  ~ 𝑈(0, 5) 

𝛼~𝑈(0, 10) 

Model 3  𝐸 

𝛼EEfRT 

𝛼𝑆𝐺𝑇 

 𝐸 ~ 𝑈(0, 5) 

𝛼EEfRT~𝑈(0, 10) 

𝛼𝑆𝐺𝑇~𝑈(0, 10) 

Model 4  𝐸EEfRT 

𝐸𝑆𝐺𝑇 

𝛼EEfRT 

𝛼𝑆𝐺𝑇 

 𝐸EEfRT ~ 𝑈(0, 5) 

𝐸𝑆𝐺𝑇  ~ 𝑈(0, 5) 

𝛼EEfRT~𝑈(0, 10) 

𝛼𝑆𝐺𝑇~𝑈(0, 10) 

Note. 𝐸EEfRT and 𝛼𝐸𝐸𝑓𝑅𝑇 refer to 𝐸 and 𝛼 in EEfRT, whereas 𝐸𝑆𝐺𝑇 and 𝛼𝑆𝐺𝑇 refer to 𝐸 and 𝛼 in in 

SGT. 

3. Results  

3.1 Model comparison 

For each participant, the models were ranked in an ascending order based on the WAIC 

obtained. The difference between each model’s WAIC and the model with the lowest WAIC (top-
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ranked model) was computed, along with the standard error of the WAIC difference. Each WAIC 

difference was compared to its respective standard error. If the WAIC difference was smaller than 

its standard error, the models were considered to fit the data equally well. This allowed for the 

possibility that two (or more) models were statistically equally good at describing the data. As a 

principle of parsimony, when two models were statistically equally good at describing the data 

(with regards to penalized deviance), the simplest of competing theories, which in this case is the 

model with the smallest number of free parameters, was chosen to describe the effort cost and 

decision mechanism of that participant. This process is critical because negligible differences in 

the fit may be caused by a small difference in the posteriors of the parameters when assuming 

effort cost and decision mechanisms to be distinct across the two tasks. Table 4 shows the number 

of participants best-fitted by each model. The expanded version of Table 4 (Table A1 in the 

Appendix) shows the best-fitted models combinations when multiple models fit equally well and 

the number of participants for each combinations.  

Table 4 

Number of participants best-fitted by each model (expanded version of the same table is shown in 

the Appendix as Table A1). Number of participants under each risk conditions for the best-fitted 

models were the sum of particpants from the model combinations in Table A1. 

Best-fitted models 
Risk 

Low Medium High 

Model 0 5 4 7 

Model 1 24 21 16 

Model 2 4 8 6 

Model 3 1 3 6 
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Model 4 

Model 2,3,4 

3 

3 

3 

4 

5 

0 

Total  40 43 40 

Note. All other model combinations had 0 participant counts. 

As can be seen in Table 4, the data from 16 participants (about 13%) were best described 

by Model 0 which assumed that the participant’s choice selection was driven solely by reward and 

probability of winning the reward, and the harder trials were not perceived as more effortful than 

the easy choices. These participants were mostly indifferent about the task demand in the hard and 

easy choices. This may be a limitation of the EEfRT which also affects the SGT because it was 

calibrated to match choices in the EEfRT. This limitation in the present design is discussed in a 

later section. 

The remaining 107 participants (87%) perceived the difference in effort cost across the 

hard and easy choices. Most of these participants (61 participants) were best fitted by Model 1, 

which may suggest common mechanisms for cognitive and physical tasks in processing effort cost 

and decision stochasticity. Eighteen participants were best fitted by Model 2 (separate effort costs 

but common decision stochasticity), 10 participants were best fitted by Model 3 (common effort 

cost but separate decision stochasticity), and 11 participants were best fitted by Model 4 (separate 

effort cost and decision stochasticity). The choice selections of 7 participants were equally well 

fitted with models 2, 3, and 4. Since models 2 and 3 have the same number of free parameters that 

are less than Model 4 and that they were contradictory to each other, no conclusion can yet be 

reached for these participants. Models 2, 3 and 4 required choice selection to be facilitated by the 

subjective utility with at least one separate mechanism for the effort cost or decision stochasticity 

in the two tasks.  
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Given the combinations of equally good models in describing the participant’s data and 

how the best-fitted models were selected, we next computed the model weights. The model 

weights are a normalized version of how well each model fits the data, with the weights summing 

to 1. The mean model weights across subjects included in each row of Table 4 is shown as a 

separate panel in Figure 3. As can be seen, the best-fitted model in each panel has the highest mean 

weight. For example, in the panel of model 0, model 0 has the highest mean weight. Similarly, the 

mean weight of model 1 is the highest in the model 1 panel. All but the model 2, 3, and 4 panel 

(bottom left) showed the highest mean weight in the model that corresponds to the best-fitted 

model. In this panel, both model 2 and 4 have higher mean weights then model 3. Thus, with model 

2 being more parsimonious than model 4, model 2 was selected as the best-fitted model to describe 

the effort discounting behavior in these participants. 

Figure 3 

Contribution of each model’s weight in the best-fitted model from Table 4. 
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3.2 Comparing choice selection across participants best fitted by different models 

Participants’ choices and performance may be possible factors driving the discounting differences 

across the two tasks. Lower effort cost may be seen in participants that select hard choices 

frequently. On the other hand, decisions may be random in participants with high choice 

stochasticity, which may result in a 50-50 choice preferences, or choice preferences that do not 

follow subjective utility. In other words, influence of effort cost on choice preference is low in 

participants with high choice stochasticity. Task performance, which is often associated with task 

difficulty or demand, may be a driving factor for choice preferences. Table 5 shows the number of 

hard choices participants made for each task, separated by the best fitted model. Paired t-tests were 

computed to test whether the number of hard choices participants made in the two tasks differed. 

This analysis was performed separately for participants best fitted by each model. No significant 

differences were observed between tasks in participants best fitted with Model 1 (𝑡(60) =

 −0.852, 𝑝 =  0.398, 𝑑 = 0.046) , Model 4 (𝑡(10) =  −1.473, 𝑝 = 0.172, 𝑑 = 0.707) , Model 

2,3,4 (𝑡(6) =  −0.413, 𝑝 = 0.694, 𝑑 = 0.163) , and Model 0 (𝑡(15) =  −1.356, 𝑝 = 0.195, 𝑑 =

0.457 ).  However, participants that were best fitted with Model 3 ( 𝑡(9) =  −3.219, 𝑝 =

0.011, 𝑑 = 0.760) chose hard choice more often in the SGT than in the EEfRT. Although the 

difference was not significant, participants best fitted with Model 2 ( 𝑡(24) =  −2.015, 𝑝 =

0.055, 𝑑 = 0.493 ) trended towards selecting more hard choices in the SGT than in the EEfRT. 

Table 5 

Percentage of hard choice selection in the EEfRT and the SGT for each best fitted model 

Best fitted 

model 

EEfRT SGT 

Mean, % Standard deviation, % Mean, % Standard deviation, % 
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0 71.9 10.4 77.5 13.8 

1 55.4 23.9 56.4 23.9 

2 + (2,3,4) 50.0 23.9 62.8 27.7 

3 65.6 18.6 77.9 13.1 

4 42.1 16.4 57.9 26.9 

All models 56.1 22.8 62.4 24.4 

 

3.2.1 Order effects 

Next, possible order effects of choice selection in the experiment and changes in choice 

selection across trials in each task were investigated. We failed to detect order effects for choice 

selection in either tasks (EEfRT: 𝑡(121) =  0.501, 𝑝 = 0.618, 𝑑 = 0.090 , SGT: 𝑡(121) =

 0.907, 𝑝 = 0.366, 𝑑 = 0.164). This suggests that we did not find evidence that the choices made 

in the two tasks were affected by the order of which task came first. However, when examining 

trials in the first half vs the second half of each task, choice selection changed as the task progressed 

(EEfRT: 𝑡(122) =  3.064, 𝑝 = 0.002, 𝑑 = 0.276 ; SGT: 𝑡(122) =  3.862, 𝑝 < 0.001, 𝑑 =

0.348), whereby participants chose more hard trials in the second half of the task than the first. 

While there may be different factors causing this effect, three possibilities we focused on were 

reward satisfaction, fatigue, and the knowledge gained on the reward structure as the task 

progressed.  

The effect of reward satisfaction as shown in Figure 4 was determined by looking at 

whether the choice difference across trials was driven by the satisfaction of gathering enough 

rewards in the first half of the experiment. The mean of the rewards won in the first half of each 

task gave us a sense of reward satisfaction while the difference in proportion of hard choices made 

in the first and the second halves of the tasks implies if participants made more (or less) choice in 
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the second half of the task. The effect of reward satisfaction may be seen if fewer hard choice were 

made when the reward obtained in the first half was greater. However, there was no significant 

correlation between the mean reward won in the first half of the tasks and the difference in 

proportion of hard choices made in the first and second halves of the experiment (EEfRT: 𝑅2  =

 0.042, 𝑝 = 0.642; SGT: 𝑅2  =  0.009, 𝑝 = 0.926).  

Figure 4 

The relationship between the mean of reward won in the first half of the task and the difference in 

proportion of hard choices made in the first and second halves of the task (left: EEfRT, right: SGT). 

 

 

The effect of fatigue may be observed if participants that chose hard choices more at first 

made fewer hard choices towards the end of the task. Thus, fatigue should be accompanied by a 

negative correlation between the hard choices made in the first half and the second half of each 

task.  However, this was not the case as shown in Figure 5, with positive correlations shown 

comparing the proportion of hard choices made in the first and second halves of both tasks (EEfRT: 

𝑅2  =  0.731, 𝑝 <  0.001; SGT: 𝑅2  =  0.766, 𝑝 <  0.001).  The positive correlation implies that 
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if a participant chose more hard choices in the first half of the task, the same participant also chose 

more hard choices in the second half of the task, which is the opposite of the fatigue effect. 

Figure 5 

The proportion of hard choices made in the first and second halves of the task (left: EEfRT and 

right: SGT). 

 

 

With fatigue and reward satisfaction out of the picture, we examined whether figuring out 

the reward structure at a later stage of the task influenced choice differences across trials. One 

possible factor is the experience of win-probability. The choice difference across the tasks for the 

three levels of probabilities shown to the participants are depicted in Figure 6. The three levels of 

probabilities were the low (𝑝(𝑡) = 0.00, 0.12, or 0.24), medium (𝑝(𝑡) = 0.38, 0.50, or 0.62) and 

high (𝑝(𝑡) = 0.76, 0.88, or 1.00) win-probabilities shown to the participants, regardless of the risk-

condition. Testing the difference in number of hard choices made in the first and second halves of 

the task against zero, participants in the EEfRT made fewer hard choices in the second half of the 

task when the probability of winning the reward was either medium ( 𝑡(122) = 6.33, 𝑝 <

0.001, 𝑑 = 0.498) or low (𝑡(122) =  3.002, 𝑝 = 0.003, 𝑑 = 0.187). No significant difference 
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was observed for the difference in number of hard choices when the probability of winning the 

rewards was high (𝑡(122) =  1.789, 𝑝 = 0.076, 𝑑 = 0.156). In the SGT, participants made fewer 

hard choices in the second half of the task when the probability of winning the reward was either 

medium (𝑡(122) =  6.352, 𝑝 =< 0.001, 𝑑 = 0.573) or low (𝑡(122) =  3.074, 𝑝 = 0.003, 𝑑 =

0.227). Similar to the EEfRT, no significant difference was observed for the difference in number 

of hard choices when the probability of winning the rewards was high (𝑡(122) =  1.739, 𝑝 =

0.085, 𝑑 = 0.138 ). Together, these results suggest that participants may engage in choice 

exploration at the beginning of the task, but as the task progresses and after experiencing the win-

probability, the participants chose the hard choice less when the win-probability shown was low 

or medium. This interpretation would be consistent with earlier work suggesting that participants 

aim at minimizing effort when reward is unlikely (Kool et al., 2010). Thus, learning the win-

probability may account for how choice selection changed as the task progressed.. 

Figure 4 

Choice difference across task for the three levels of probabilities shown to the participants (left: 

EEfRT, right: SGT). The choice differences across task was calculated by taking the mean of the 

difference in the numbers of hard choices made in the first and second halves of the tasks. 
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3.3 Comparing task accuracy across participants best fitted by different models 

Table 6 shows mean accuracies in easy and hard choices separated by task and best fitted 

model. Paired t-tests were computed to test whether the accuracy in hard and easy choices differed 

between the two tasks. This analysis was performed separately for participants with each best fitted 

model. Because some participants chose the hard choice for all trials in at least one of the tasks, 

data from these participants were omitted in the comparison of accuracy for easy choices across 

the EEfRT and SGT (n = 5). For hard choices, participants best fitted with Model 1 performed 

significantly better in the EEfRT as compared to the SGT, 𝑡(60) =  2.654, 𝑝 =  0.010, 𝑑 =

0.465. However, no significant difference in accuracy was observed for participants that were best 

fitted with Model 2 ( 𝑡(24) =  1.737, 𝑝 = 0.095, 𝑑 = 0.416 ), Model 3 ( 𝑡(9) =  0.366, 𝑝 =

0.723, 𝑑 = 0.168), Model 4 (𝑡(10) =  −0.760, 𝑝 = 0.465, 𝑑 = 0.345), and Model 0 (𝑡(15) =
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 1.269, 𝑝 = 0.224, 𝑑 = 0.452). Similarly, for easy choices, participants best fitted with Model 1 

performed significantly better in the EEfRT as compared to the SGT, 𝑡(56) =  3.759, 𝑝 <

 0.001, 𝑑 = 0.620. Again, no significant difference in accuracy was observed for participants that 

were best fitted with Model 2 ( 𝑡(23) =  −0.283, 𝑝 = 0.780, 𝑑 = 0.050 ), Model 3 ( 𝑡(9) =

 −0.059, 𝑝 = 0.954, 𝑑 = 0.030), Model 4 (𝑡(10) =  0.638, 𝑝 = 0.538, 𝑑 = 0.298), and Model 0 

(𝑡(15) =  −0.109, 𝑝 = 0.914, 𝑑 = 0.035).  

Table 6 

Mean accuracy (and SD) of easy and hard choices in the EefRT and SGT for each best fitted model 

 Accuracy, % (standard deviation) 

Best fitted 

model 

EEfRT SGT 

Easy choices Hard choices Easy choices Hard choices 

0 90.6 (9.2) 87.9 (15.7) 91.0 (13.0) 81.6 (12.2) 

1 93.0 (13.3) 87.4(20.0) 81.9 (21.7) 78.5 (18.5) 

2 + (2,3,4) 92.8 (12.1) 91.8 (17.4) 93.4 (12.0) 85.3 (13.6) 

3 91.1 (16.4) 88.3 (31.1) 91.5 (15.2) 84.4 (10.2) 

4 92.2 (8.3) 77.6 (38.5) 86.6 (25.1) 87.57 (13.4) 

All models 92.4 (12.4) 87.6 (22.2) 86.7 (19.3) 81.6 (16.0) 

 

3.4 Testing task stability with different risk-incentive combinations 

A chi-square test of independence was performed to examine the relation between best 

fitted model and risk condition. The relation between these variables was not significant, 

𝑋2(10, 𝑁 = 123) = 11.034, 𝑝 = 0.355. As a result, the influence of risk condition on the number 

of participants best-fitted by each model was not observed. Figure 8 shows the distribution of 
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𝐸 and 𝛼 for participants of different risk conditions who were best fitted by Model 1 (about half 

of the participants). In the low-risk condition, 𝐸 averaged at 0.961 (standard deviation = 1.021) 

and 𝛼 averaged at 3.593 (standard deviation = 2.719). In the medium-risk condition, 𝐸 averaged 

at 0.941 (standard deviation = 0.747) and 𝛼 averaged at 2.813 (standard deviation = 1.642). In the 

high-risk condition, 𝐸 averaged at 1.086 (standard deviation = 0.693) and 𝛼 averaged at 3.018 

(standard deviation = 2.188). From Figure 7, it seems that 𝐸 for the low risk condition had a greater 

positive skewness (skewness = 1.504) when compared to the higher risk conditions (skewness in 

medium risk = 0.876, skewness in high risk = 0.171). The greater positive skewness in 𝐸 in the 

low risk condition indicates that more participants in the low risk condition have a smaller effort 

cost. However, this may be due to the scaling effect of effort with reward when computing the 

subjective utility, which results in a lower effort cost as compared to the other risk conditions. In 

contrast, the 𝛼 for the high risk condition had a greater positive skewness (skewness = 1.119) when 

compared to the lower risk conditions (skewness in low risk = 0.623, skewness in medium risk = 

0.533). The greater positive skewness in 𝛼 in the high risk condition indicates that participant 

followed the subjective utility less strictly in the high risk condition where the win probability is 

low.  

Figure 7 

The distribution of the maximum a. posteriori of 𝐸 (top row) and 𝛼  (bottom row) for all 

participants best-fitted with Model 1 under different risk conditions.  
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3.5 Sensitivity to changes in reward motivation 

Because about half of the participants were best fitted with Model 1, where the same 𝐸 and 

𝛼 were utilized for choice selection in the two tasks, the influence of decision factors, namely the 

reward and win-probabilities on choice selection, were investigated next. This is to explore 

whether the two measures were similarly sensitive to changes in reward motivation in both tasks. 

To explore how reward affects choice selection in the two tasks, the number of hard choice 

selection for all participants (regardless of the model fit) was computed with respect to the reward 

shown. This was done separately for the two tasks. Similarly, to explore how probability of 

winning the reward affected choice selection in the two tasks, the same was computed with respect 

to the probability of winning the reward for the EEfRT and the SGT separately. Figure 8 compares 

the number of hard choices in the two tasks for different magnitudes of rewards and probabilities. 

As can be seen, choice selection in one task is positively and highly correlated to the choice 

selection in the other task across different reward values ( 𝑅2  =  0.83, 𝑝 <  0.001 ) and 

( ( (

( ( (
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probabilites of winning the reward (𝑅2  =  0.98, 𝑝 <  0.001). Moreover, the positioning of the 

color codes in the graphs suggested that more hard choices were made when reward and probability 

of winning the reward were high. This is consistent with their role in increasing choice utility in 

the proposed models: participants were more willing to exert extra effort in choosing the hard 

choices of the tasks when the reward and probability of winning the reward were high.  

 Figure 8 

The frequency with which participants selected the harder task in the EEfRT (y-axis) and the SGT 

(x-axis) with respect to the differences in (a) the probability of winning the reward and (b) the 

reward value presented in the three risk conditions 

 

Risk 

conditions: 

 High 

▲ Medium  

 Low 
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Note. Each symbol in the top panel represents one of the nine win-probabilites while each symbol 

in the bottom panel represents one of the 48 rewards shown to the participants. Symbol color 

corresponds to reward or probability values and shape corresponds to risk condition. 

4. Discussion 

We proposed the use of the SGT as a cognitive-based alternative to the EEfRT and showed 

similar effort discounting in choice selection in the EEfRT and the SGT. By comparing action 

selection under different reward motivation between the SGT and the EEfRT, we showed that 

individual differences in cognitive and physical effort discounting can be accounted for by 

common mechanisms. By computing the subjective utility in the two tasks, we proposed the use 

of computational models as an indirect measure of cognitive effort by relating the subjective 

cognitive effort to physical effort. With the quantification of cognitive effort in the SGT, the use 

and study of effort discounting can be broadened to reward motivation-based decision-making, 

especially in clinical populations.  

The best-fitting model with the most participants was a model that assumed shared effort 

cost and choice stochasticity across the two tasks. This suggests that the relative effort cost in 

choosing the harder version of the task for greater rewards was perceived similarly in both tasks 

by many participants. The shared effort costs in these participants were reflected as similar 

proportions of hard choices made in the two tasks. This shows that participants perceived similar 

effort costs in the SGT and the EEfRT, and that the effort cost reduced the expected value of the 

options presented in the task. Choice selection in participants who have lower choice stochasticity 

(higher 𝛼) were driven more by subjective utility. Thus, with greater certainty in obtaining a 

greater reward, participants were more willing to invest effort to optimize reward in both the SGT 

and EEfRT. 
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It should be noted that about 13% of participants were best described by Model 0, whereby 

effort cost did not influence choice utility, and the stochasticity parameter, 𝛼 had a low value. 

These participants had a lower effort cost and did not scale the utility of the tasks. Because these 

participants did not show a difference in effort perception between the easy and hard versions of 

the tasks, the task demand did not influence their choice selection. These participants generally 

had a greater choice preference towards the hard choices, as the objective utility of the hard choice 

was always greater than the easy choice. They would only choose the easy choice when the 

perceived subjective utility of the easy choice was about the same or greater than the hard choice. 

Since these participants also share similar effort discounting across the two tasks, they selected 

hard choices about the same number of times in both the SGT and the EEfRT. Fatigue may be one 

of the factors contributing to this observation, but this was not explicitly tested in the present 

experiment. Further investigation is needed to explore what drives the difference in hard choice 

selections in the two tasks in this group of participants. 

4.1 Measuring cognitive effort 

It was shown that the data from most participants in different risk conditions was best-fit 

by Model 1, which showed that the effort cost and the reliance of subjective utility in choice 

selection remained the same across tasks. Moreover, regardless of whether the participant was risk 

averse or risk seeking, the change in task did not change the participant’s behavior and risk-reward 

perception. Since the effort cost was shown as a stable trait across tasks in the majority of 

participants, this study demonstrated the possibility of using the SGT as an alternative to the 

EEfRT in examining effort-based decision-making. Model fitting was not affected by varying the 

overall reward and risk of winning the reward. However, effort cost and choice stochasticity may 

be influenced by the risk condition. The distributions of 𝛼  and 𝐸 across the different risk 
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conditions were skewed positively. The greater positive skewness in 𝐸 in the low risk condition 

may be due to the scaling effect of effort with reward when computing the subjective utility. The 

greater positive skewness in 𝛼 in the high risk conditions may be due to the greater uncertainty in 

obtaining the reward, whereby more participants relied less to the subjective utility in choice 

selection. 

However, in about 37% of the participants, either the effort cost or the participant’s reliance 

on subjective utility in choice selection may be different (fitted separately but values may coincide) 

for the two tasks. Around 20% of the participants may have perceived different effort costs in the 

two tasks but the influence of subjective utility on choice selection was similar in the two tasks. 

These participants tended to choose the hard version of the task more in the SGT as compared to 

the EEfRT. The lack of a significant difference between tasks for these participants may have been 

due to the small sample size. The difference in perceived effort cost may be a potential factor 

driving this trend towards a significant difference. These participants may have perceived a greater 

effort cost in the EEfRT. The difference in effort cost may be driven by the trending difference in 

their performance in the hard trials of the two tasks, whereby the performance in the hard trials in 

the EEfRT was better than in the SGT. In the SGT, with less uncertainty in obtaining the reward 

(existing probability shown and performance uncertainty), the participant might make more hard 

choices to increase their chances of obtaining the reward. Previous studies comparing cognitive 

and physical effort showed that people are more willing to exert effort for a lower reward and 

chance of receiving the reward in a cognitive effort-based decision paradigm when compared to 

the EEfRT, even when they deemed the cognitive task to be more difficult (Lopez-Gamundi & 

Wardle, 2018). However, task difficulty does not directly translate into effort (Kool & Botvinick, 

2018). Future research should examine the task preferences of individuals between the SGT and 
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the EEfRT by allowing participants to choose between the two tasks in each trial with varying task 

demands (Potts et al., 2018) and reward offers. Moreover, the tasks can be modified to personalize 

and calibrate the task demands and fit to each participant’s performance.  

On the other hand, subjective utility in the two tasks were not perceived or utilized equally 

in about 17% of the participants. Among these participants, about half of them had a similar effort 

cost in both tasks, and the other half perceived different effort costs in the two tasks. The former 

participants made more hard choices in the SGT than they did in the EEfRT, while the latter’s 

choice selection in both tasks wasn’t dissimilar. It is noted that no significant difference was found 

when comparing performance in both tasks for these participants. The difference in effort cost 

moves motivation either up or down, while the difference in choice stochasticity scales motivation 

by either amplifying subjective utility or blurring motivation to choose by chance. It is highly 

possible that choice selections in participants who perceived unequal subjective utility but similar 

effort cost across the two tasks may have been driven by order effects, such that the participants 

chose the hard choice more often in the task that came first as compared to the task that came after. 

However, we could not examine the possibility of order effects in these participants due to small 

sample size. Possible factors causing the order effect may include a lack of understanding of the 

experiment at the start of the task, or even as a result of forming strategies after the first task. On 

the other hand, choice selection in participants that perceived both subjective utility and effort cost 

differently in the two tasks may be driven by a lack of difference in the perceived difficulty of 

accomplishing the hard and easy trials, especially in the SGT. Effort cost or even choice 

stochasticity may not be the same in the two tasks if one task was perceived as more demanding 

than the other task. 
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4.2 Possible applications for the proposed SGT 

With the EEfRT’s contribution in showing decreased motivation for rewards in trait 

anhedonia (Treadway et al., 2009), and the significant prior evidence linking mesolimbic 

dopaminergic systems to symptoms of anhedonia in depression (Phillips et al., 2007; Salamone & 

Correa, 2002), the proposed cognitive paradigm may be applicable to study how depletion of 

dopamine in the nucleus accumbens is associated with decreased motivated behaviors toward 

“wanting” a desired goal (Berridge and Robinson, 1998). The neurotransmitter dopamine has been 

shown to aid in overcoming choice response costs and to increase the selection of effortful actions 

(Salamone and Correa, 2002; Phillips et al., 2007) in various domains of effort (Cools, 2015; 

McGuigan et al., 2019; Verguts et al., 2015; Westbrook & Braver, 2016). Furthermore, given that 

about 40% of patients with Parkinson’s disease (who have reduced dopamine levels; Damier et al., 

1999) have symptoms of motivational disorders in addition to motor deficits (den Brok et al., 

2015), the proposed cognitive paradigm may be an alternative in examining the motivational 

deficits in incentivized decision-making involving people with Parkinson’s disease. The SGT may 

benefit such studies even more given the disorder of movement in people with Parkinson’s disease. 

For these participants, constant physical effort tasks may be deemed extra effortful with a greater 

sense of effort related to fatigue (Solomon and Robin, 2005). As a result, perception of effort 

expenditure in physical effort-based decision-making tasks may be much greater in people with 

Parkinson’s disease. 

Despite the clinical importance of studies of reward motivation, there is still a large gap in 

knowledge about effort-related decision-making in humans. Thus, we propose the use of a 

cognitive task to measure the willingness to exert effort in cognitive decision-making that is 

comparable to the existing EEfRT (Lopez-Gamundi & Wardle, 2018). Such a task will not only 
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be beneficial in studying the discounting effect in motivational decision-making, it may also 

contribute to the comparison of the role of dopamine in manipulating the willingness to exert effort 

in cognitive and motor domains. 

4.3 On the relation between cognitive and physical effort 

In the present study, the cognitive effort to accomplish the SGT was attention-based, where 

participants had to track the movement of the target without being distracted by the motion of the 

distractor items. This sustained attention was not needed in the EEfRT, since the EEfRT only 

required participants to repeatedly press a key. Despite the difference in the nature of effort 

expenditure, reward motivation of the majority of participants were discounted similarly for the 

two tasks. The similarity in effort discounting with both physical effort and sustained attention 

may thus be a general phenomenon across many cognitive functions. More research is needed to 

explore the generality of these results.  

Sustained attention can be associated with different or perhaps opposite subjective effort 

experiences. Humans tend to mind wander or even avoid engagement in repetitive and 

uninteresting tasks, yet are fully absorbed in tasks that they find interesting but equally cognitively 

demanding (Csikszentmihalyi, 1975; Langner & Eickhoff, 2013). Sustaining attention to simple, 

intellectually unchallenging, monotonous tasks is perceived as effortful and demanding 

(Kahneman, 1973; Manly et al., 2003). Extended performance in such situations may lead to 

subjective strain or even cognitive fatigue over time (Grier et al., 2003; Langner & Eickhoff, 2013; 

Warm et al., 2008), and is often associated with increased absentmindedness and mind wandering 

(Cheyne et al., 2009; Langner & Eickhoff, 2013; Smallwood et al., 2004). The SGT is an example 

of such a simple, monotonous, and repetitive task that requires participant to sustain attention on 

the target. Because it may induce cognitive fatigue over time, it is parallel and translational to the 
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EEfRT that incudes physical fatigue. As a result, the SGT is suitable for studying the breakeven 

of sustained attention-induced cognitive effort with increased reward motivation without adding 

unwanted confounding factors of motivations such as those from the challenging tasks. 

With showing how effort exertion is comparable in the SGT and the EEfRT, this study also 

suggests a possibility for an indirect measurement of cognitive effort through computing the effort 

cost with the computational models presented. Since the effort exertion or work done in key-

pressing can be measured in Joules, by equating the effort in the SGT and the EEfRT, it may be 

possible to obtain a rough estimation of effort perception analogous to Joules for a cognitive task 

such as the SGT. This could be useful in the quantification of cognitive effort because estimating 

effort exertion in a cognitive paradigm has proven to be difficult. More work is needed to test for 

this possibility.  

4.4 Limitations    

One potential concern in the experiment is the issue of temporal discounting in the tasks. 

In the EEfRT, with the difference of the trial’s time limit and number of key presses between the 

easy and the hard choices, participants may take a longer time to finish the hard choices as 

compared to the easy choices. On the other hand, in the SGT, there are more swapping in the hard 

choices than the easy choices, even with the increased speed in the hard choices, the time to 

complete one trial when choosing the hard choice is longer than that when choosing the easy choice. 

The issue of time may be confounded with the effort cost in affecting the choice selection. The 

original EEfRT (Treadway et al., 2009) was designed to serve as an objective measure of 

individual differences in reward motivation, in assessing the willingness to make choices that 

require greater effort in exchange for greater reward. The hard choice in the EEfRT requires extra 

(often twice as much or more) motoric or physical work as compared to the easy choice. However, 
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heavier work is often accompanied by possibly longer time in accomplishing the work and a 

greater uncertainty of success. This leaves the nature of discounting in EEfRT not purely demand-

related, temporal discounting or even uncertainty in accomplishing the task may be influencing 

the choice selection. It should be noted that prolonged motoric work may seem extra effortful (Cos, 

2017; Morel et al., 2017), and it is hard to distinguish the effect of physical effort discounting or 

temporal discounting in such cases. Past research had shown the effects of poor quality of sleep 

on the preference for hard choices in the EEfRT but not on delay-discounting for greater reward 

that participants need to wait longer to obtain (Boland et al., 2022). This suggests that the 

discounting cost in the EEfRT is not solely based on temporal or delay-discounting. Moreover, in 

our study, participants were informed that they would only receive the reward towards the end of 

the experiment, once all participants in the same session were done with both tasks. This should 

minimize temporal discounting effects on reward motivation for both tasks.  In addition, the hard 

choices were selected for more than half of the time of the tasks. This means that most participants 

were not rushing through the experiment by selecting the easy choice only.  

A study from Giustiniani et al. (2020) measured event-related potentials associated with 

reward processing in a modified version of the EEfRT. In their version of EEfRT, participants had 

to reach 70% of their maximum number of key presses in 7s if they chose the easy or less 

demanding choice, and 90% of their maximum number of key presses in 14s for the hard or more 

demanding trials. With a much lower speed of key presses in the hard trials, which compensates 

for the greater uncertainty of accomplishing the task, they managed to replicate the results from 

the original EEfRT in demonstrating that participants chose to press more keys when the reward 

motivation is high.  
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Furthermore, accuracy in both the hard and easy choices in the SGT was significantly lower 

than that in the EEfRT.  Even though the demand in each task was adjusted based on the accuracy 

in pilot experiments, it can still vary across participants in the actual experiment. Future studies 

may require adjusting the difficulty metrics in the tasks. It should be noted that this difference in 

accuracy may pose a problem when comparing the two tasks, but should not be a problem when 

using the individual tasks. The SGT can still capture the devaluation of motivation with the 

difference in task demand. 

The current study only showed the possibility of relating sustained-attention based 

cognitive effort to physical effort. More work is needed to determine when the effort discounting 

effect differs in the two types of effort tasks. Functional MRI (fMRI) studies have shown shared 

neural bases for cognitive and physical effort discounting in humans, along with certain task-

specific regions (Schmidt et al., 2012). Specifically, the ventral striatum has been shown to serve 

as a general motivational node in driving both the cognitive and motor regions of the dorsal 

striatum (Schmidt et al., 2012). Future studies can be conducted to determine if differences in the 

activation of neural correlates can account for differences in effort discounting. One possible 

experiment is to examine if an individual weighs reward and risk equally in the two types of effort 

motivation. The results presented in this article showed that choice selection may be driven by 

utility in a similar way across the two tasks. However, the influence of reward and the probability 

of winning the reward on the choice selection were not explored separately. Relating the 

differences (if any) in the choice stochasticity by reward and risk to the differences in neural 

correlates may help understand the discrepancies in effort discounting in the two types of effort. 

Furthermore, with the difference in effort distribution observed across different risk conditions, 

the effect of reward in effort perception can be further investigated. 
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Appendix 

Table A1 

Expanded model information for Table 4: Number of participants best-fitted by each model 

combination. For example, the combination of model 0, models 0 and 2, models 0 and 3, up to 

models 0, 1, 2, 3 and 4 all include model 0 as equally good in describing the participant’s behavior. 

Thus, model 0 was selected as the best-fitted model under the principle of parsimony with Occam’s 

razor. 

Best fitted models 

Risk 

Low Medium High 

Model 0:    

0 

0,2 

0,3 

0,1,2 

0,1,3 

0,2,4 

0,1,2,3 

0,1,3,4 

0,2,3,4 

0,1,2,3,4 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

2 

0 

2 

1 

0 

0 

0 

1 

1 

0 

Model 1:    

1 

1,2 

7 

2 

3 

2 

3 

3 
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1,3 

1,4 

1,2,3 

2 

1 

4 

3 

0 

5 

2 

0 

3 

1,2,4 

1,3,4 

2 

2 

0 

1 

0 

2 

1,2,3,4 4 7 3 

Model 2:    

2 

2,4 

1 

3 

5 

3 

1 

5 

Model 3:    

3 

3,4 

0 

1 

1 

2 

2 

4 

Model 4: 

4 

 

3 

 

3 

 

5 

Model 2 or Model 3:    

2,3,4 3 4 0 

Total  40 43 40 

Note. All other model combinations had 0 participant counts. Bold model numbers are the 

corresponding selected model in Table 4. 

 


