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A problem is a situation in which an agent seeks to attain a given goal without knowing how
to achieve it. Human problem solving is typically studied as a search in a problem space com-
posed of states (information about the environment) and operators (to move between states).
A problem like playing a game of chess has 10120 possible states, and a travelling salesper-
son problem with as little as 82 cities already has more than 10120 different tours (similar to
chess). Biological neurons are slower than the digital switches in computers. An exhaustive
search of the problem space exceeds the capacity of current computers for most interesting
problems, and it is fairly clear that humans cannot in their lifetime exhaustively search even
small fractions of these problem spaces. Yet, humans play chess and solve logistical problems
of similar complexity on a daily basis. Even for simple problems humans do not typically en-
gage in exploring even a small fraction of the problem space. This begs the question: How do
humans solve problems on a daily basis in a fast and efficient way? Recent work suggests that
humans build a problem representation and solve the represented problem – not the problem
that is out there. The problem representation that is built, and the process used to solve it, are
constrained by limits of cognitive capacity and a cost–benefit analysis discounting effort and
reward. In this article, we argue that better understanding how humans represent and solve
problems using heuristics can help inform how simpler algorithms and representations can be
used in artificial intelligence to lower computational complexity, reduce computation time, and
facilitate real–time computation in complex problem solving.

Introduction

A problem is a situation in which an agent seeks to at-
tain a given goal without knowing how to achieve it. Ex-
ample problems include winning at tic–tac–toe or winning a
battle, air traffic control, control of an uninhabited vehicle,
getting to checkmate in chess, visually–guided navigation,
proving a logic theorem, solving math and physics problems,
cracking the enigma code, or formulating a new scientific
theory. Some problems are more visual, such as planning a
tour around a grocery store, while others are more abstract,
such as proving a theorem using predicate logic. Newell and
Simon’s (1972) formulation of problem solving as a goal–
directed search in a problem space is still a largely–accepted
view. According to that view, the problem space is com-
posed of a number of states and operators. The states can be
defined either explicitly or implicitly and correspond to all
the problem information available to the problem solver. The
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solver begins in an initial state, and aims to reach a goal state.
All other problem states are called intermediate states. The
solver moves from state to state using a set of operators. For
example, the initial state in a game of tic–tac–toe is an empty
grid, and a goal state has three identical markers aligned hori-
zontally, vertically, or diagonally. All other configurations of
markings are intermediate states, and the operator is simply
to put a mark in one of the empty squares in the grid.

Not all problems are as simple as tic–tac–toe: It con-
tains only one clearly defined operator (putting a marker)
and 26,830 possible states (i.e., configurations of markers).
However, problem complexity can increase quickly. A prob-
lem like playing a game of chess has 10120 possible states,
and choosing what food to buy at a grocery store with as
little as 1,000 different items can produce more than 10300

possible lists of items (states) (Choi, Kim, & Lee, 2021).
It is important to note at this point that biological neurons
are slower than the digital switches in a modern computer.
An exhaustive search of problem spaces exceeds the capacity
of current digital computers for most realistically interesting
problems, and it is fairly clear that humans cannot in their
lifetime exhaustively search even small fractions of these
problem spaces. Yet, humans play chess and solve logisti-
cal problems of similar complexity on a daily basis. Even
for a simple problem such as tic–tac–toe, typical players do
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not engage in exploring even a small fraction of the prob-
lem space. This begs the question: How do humans solve
problems on a daily basis in a fast and efficient way?

In this article, we argue that studying human problem
solving can provide important insight about how problems
can be represented and simplified to allow for reaching solu-
tions more efficiently. Given the limited cognitive resources
available to humans, simplification of the problem space or
operators is a necessity. While artificial intelligence (AI)
does not suffer from these same cognitive limitations, simpli-
fying the problems presented to AI agents the same way hu-
mans are simplifying problems can allow for more efficient
and timely solution to complex problems.1 The remainder
of this article is organized as follows. First, we provide a
short introduction to the notion of growth in computational
complexity. This allows for determining the number of oper-
ations needed to search a problem space and solve a given
problem. Next, we review how humans reduce computa-
tional complexity by either using heuristic operators or sim-
pler representations. This presentation is followed by recom-
mendations of how the knowledge obtained by studying hu-
man problem solving can be used to improve problem solv-
ing by AI agents. We conclude with general considerations
and future directions.

Computational complexity in problem solving

The most common way to represent problem solving sce-
narios is to specify a graph in which one or more nodes
are starting states (e.g., all the information about the envi-
ronment2 available before beginning to solve the problem),
one or more nodes are goal states (e.g., all the information
about the environment available after solving the problem),
and edges represent transitions between pairs of states (op-
erators) (Fleischer, Hélie, & Pizlo, 2018; Newell & Simon,
1972). Each edge has a cost. In some puzzles like 15–puzzle
(the common tile game where one needs to order 15 tiles on
a 4 × 4 grid) and Tower of Hanoi (where one needs to move
disks from one peg to another while maintaining stacking
order), each edge has a cost of 1 and represents a step. In
problems such as the travelling salesperson problem (TSP),
the cost of an edge is the length of the shortest path between
pairs of cities. In the previous shopping list example, the cost
would be a negative function of the utility of adding a product
to the list. An agent, human or a computer, has to figure out
how to get to the goal state from the start state. Any path
would represent a solution, but the shortest (least–cost) path
is the optimal solution. Typically, solving a problem assumes
search in the graph. During the search, an agent performs
computations. The computational complexity of a search al-
gorithm solving a problem is based on how many computa-
tions are required to produce an optimal solution. In a Big–O
notation, what is important is the amount of computations in
the worst case scenario. More precisely, the Big–O notation

states how quickly the number of computations grows with a
problem size. Typical growth functions include logarithmic,
linear, polynomial (e.g., quadratic or cubic), and exponen-
tial. The previous growth functions are listed in decreasing
order of desirability, and the first three are generally con-
sidered “tractable” (Rich, Blokpoel, de Haan, & van Rooij,
2020). However, exponential growth quickly outgrows com-
putational resources and problems that can only be solved by
exponentially growing algorithms are generally considered
“intractable”.

The TSP is an example problem where finding the opti-
mal solution requires a number of computations that grows
exponentially. Yet, the TSP problem does not appear to hu-
man subjects as extremely difficult. When presented with a
20–city TSP, a subject is likely to produce a tour that is very
close to optimal, and the tour will be produced in about one
minute (Dry, Lee, Vickers, & Hughes, 2006; Graham, Joshi,
& Pizlo, 2000). When a 60–city TSP is used, the subjects
produce a near–optimal tour in 3 minutes. So, on average,
the time the human subjects use in producing TSP tours is
proportional to the number N of cities – suggesting that hu-
mans use an algorithm with linear growth. One possibility
is that subjects are solving a different problem (Carruthers,
Stege, & Masson, 2018). This is hinted by the observation
that humans are not producing THE optimal solution, but in-
stead a reasonably good suboptimal solution. Another possi-
bility is that the subjects are solving a TSP problem, which
asks for the shortest tour, but the algorithm that the human is
using prevents them from producing such tours. The mental
operations are limited by the size of working memory (WM),
which can only hold and manipulate a few items at a time.
A 20–city TSP has 19!/2 tours, which is about 1017. The
number of neurons in the brain is one million times smaller
than this number. As a result, physical limitations in humans
likely prevent the subject from exploring even a fraction of
the possible tours. With a WM that can hold only a couple
items at a time, the subject cannot perform any substantial
amount of search because the number of options at any given
step must be no more than WM capacity. AI algorithms do
not generally have to operate under such constraints. With
humans, WM is also not the only constraint. Time is another
one. If the subject evaluated one tour per second, evaluating
all tours in a 20–city TSP would take the time between the
Big Bang and today. A human subject produces a TSP tour
in 60 seconds, and there is reason to believe that most of this

1AI suffers from its own set of limitations, e.g., limited access
to meaning (Searle, 1980). However, these limitations are outside
the scope of this article. Nevertheless, it is important to note that no
intelligent system, natural or artificial, operates without limitation.

2In this article, we use environment as defined in the reinforce-
ment learning literature (Sutton & Barto, 1998). As a result, the
environment includes everything that is outside the agent (e.g., per-
ceptual cues, rewards, other agents, etc.).
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time is spent moving a computer mouse and clicking on the
20 points. The actual solution time is likely to be less than
one minute. The next section discusses how humans achieve
high performance in complex problems despite these limita-
tions.

Human problem solving

Given the high complexity of most interesting problems,
how do humans solve problems? In the previous section, we
briefly reviewed cases where humans were solving complex
problems (e.g., the TSP, grocery shopping) almost instanta-
neously. How is this achieved given the biological and cog-
nitive limitations? Not only is the number of neurons and
synapses in the brain “small” when compared to the number
of operations needed to implement the algorithms required
to solve many problems, but neurons are also notoriously
slow. The maximum firing rate of biological neurons is about
1000 Hz, and typical firing rates are less than 100 Hz. This
is orders of magnitude slower than the digital switches in a
modern computer. An exhaustive search of problem spaces
exceeds the capacity of current digital computers for most re-
alistically interesting problems, and it is fairly clear that hu-
mans cannot in their lifetime exhaustively search even small
fractions of these problem spaces.

In addition to biological limitations, humans and other
animals have important cognitive limitations. For example,
WM capacity estimates typically range from 4–7 items for
young adults (Ashby, Ell, Valentin, & Casale, 2005). These
estimates provide an upper bound on the number of states or
possibilities that can be considered simultaneously. In addi-
tion to space limitations, there are also temporal limitations.
For example, the well–known attentional blink phenomenon
shows that it takes time to engage and disengage attention to
target stimuli (Raymond, Shapiro, & Arnell, 1992). Given
these limitations, human problem solvers need to reduce the
computational complexity of the algorithms they use to find
satisfactory problem solutions (Carruthers et al., 2018). This
“over–performance” of humans in problem solving is likely a
consequence of using heuristics and re–representation. The
next two subsections discusses these topics in turns.

Searching for better operators: Heuristics in problem
solving

There are at least two different systems that people use to
make decisions: an analytical process and a non–analytical
process. The former is logical and cost–based, while the sec-
ond is fast and intuitive (Miller & Geraci, 2016; Mueller &
Dunlosky, 2017). AI agents typically implement the first (an-
alytical) process. As a case in point, “learning” in AI typi-
cally refers to finding the optimal parameters of an objective
function (Abel, 2003; Newell & Simon, 1972). However,
unlike AI systems, human decision is often biased or influ-
enced by changing the surface representation of the problem.

Humans tend to use different available cues to generate an
intuitive guess (the second, non–analytical, system). This
process is called heuristic, and it can be either accurate or
inaccurate, depending on the situation (Castel, 2008; Jia et
al., 2016; Serra & Ariel, 2014).

Because humans use heuristics, the selection of cues is
an important aspect of the problem solving process. Rel-
evant cues can be extracted from the problem space based
on their form, association, availability, or other properties.
For example, recognition heuristics give more weight to fa-
miliar objects: A familiar ham is more likely to be selected
as an edible object compared to a green egg (Gigerenzer,
2000). In most cases, when the cue aligns with its utility
in the problem, the bias can lead to fast and accurate judg-
ments (Kornell, Rhodes, Castel, & Tauber, 2011). How-
ever, humans can be distracted by irrelevant cues, such as
font and color (Mueller, Dunlosky, Tauber, & Rhodes, 2014;
Mueller & Dunlosky, 2017). Weighing irrelevant cues can
result in wasting resources and inaccurate beliefs. For ex-
ample, Mueller and Dunlosky (2017) instructed participants
that blue stimuli are calmer and more easily processed by hu-
man eyes. After receiving these (false) instructions, partici-
pants gave a higher judgment of learning score to blue stim-
uli when the actual perceptual fluency difference between the
colors should not have a significant effect on judgments of
learning (Mueller & Dunlosky, 2017).

Note that the tendency to attend to irrelevant cues can
also facilitate problem solving in some cases: One can ar-
range the irrelevant cues artificially to guide the participants
towards using relevant cues. For example, Rouinfar, Agra,
Larson, Rebello, and Loschky (2014) asked participants to
solve physics problems. The problems were represented by
diagrams, but participants could ask for cues. The cue was a
shape that would appear somewhere in the diagram. While
the shape was irrelevant to solving the problem, its location
in the diagram would correspond to an area of the diagram
that was useful in solving the problem. The appearance of
the shape shifted the participant’s attention to that part of the
diagram and increased the likelihood of solving the problem.
As can be seen from these previous results, cues and heuris-
tics influence human problem solving processes, and these
can be beneficial in directing searches and solving problems.

Participants also tend to use different heuristics voluntar-
ily to make rational and fast decisions. Humans can ex-
tract important properties in the problem space to simplify
complicated problems and generate standardized procedures,
such as decision trees, to guide and ensure efficient prob-
lem solving in the future (Gigerenzer, 2000). While partic-
ipants aim at rationality whenever possible, constraints of
WM resources make the notion of rationality bounded (Si-
mon, 1972) and effort costs need to be taken into consid-
eration. As a result, the most exhaustive methods do not
always yield the most rational result. Humans use various
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heuristic building blocks to control the evidence searching
process. For example, consider a simple problem where par-
ticipants need to make a choice between two competing al-
ternatives. Many such questions are common in everyday
decisions (e.g., should I order the soup or salad). Simple fast
and frugal heuristics can be very useful in these situations.
Fast and frugal heuristics take only part of the evidence (in
the limit one piece of information) when making compar-
isons between the two alternatives. The information consid-
ered can be based on validity, availability, or randomness.
Performance with these heuristics improve when the cue(s)
is (are) valid and had a high success rate in the past. When
only one piece of information is used the heuristic is called
Take the best (Gigerenzer, 2000). Humans tend to implement
the take the best strategy in solving problems. For example,
Yahosseini and Moussaïd (2019) asked participants to search
for rewards from a designed landscape. The reward followed
deterministic cues. The results show that participants could
efficiently detect the deterministic cue, and locate rewards
efficiently based on the cue. Participants also gave priority to
novel solutions and exploited solutions with immediate feed-
back (Gardner, 2019).

While focusing on a subset of information may be rational
in some cases, a more balanced exploration and evaluation
of joint cues can be suitable for more complicated problems
(Korf & Felner, 2002). Elimination heuristics (as used in
Yahosseini & Moussaïd, 2019) are suitable for cases where
there exist many cues and alternatives, and considering all
cases is too costly (or effortful). Limiting the amount of in-
formation considered can reduce the dimensionality of the
problem, but alternatives are ruled out (Gigerenzer, 2000).
If the correct alternative is ruled–out by the heuristics then
performance will be suboptimal.

Searching for a better problem representation: Creative
problem solving

Asides from using simpler operators and heuristics,
changing the problem space is also a useful tool to simplify
problems. This process is often called re–representation
and has been studied mostly in the context of creative prob-
lem solving (Hélie & Olteteanu, in press; Hélie & Sun,
2010). In creative problem solving, changes in the prob-
lem representation are often achieved through the use of
analogies (Gentner, 1983) and metaphors (Lakoff & John-
son, 1999). Metaphors and analogies have been shown to
facilitate representational change, restructuring, and repre-
sentational redescription (MacGregor & Cunningham, 2009;
Ohlsson, 1984), all topics that have recently gathered re-
newed interest (Olteteanu & Indurkhya, 2019). However, not
all re–representation requires using imagery. For example,
Schooler, Ohlsson, and Brooks (1993) used the following
problem:

Water lilies double in area every 24 hr. At the

beginning of the summer, there is one water lily
on the lake. It takes 60 days for the lake to be-
come completely covered with water lilies. On
which day is the lake half–covered?

Participants typically begin by attempting to write down
an equation that describes the growth of water lilies. Many
participants fail because of the recursive nature of the prob-
lem. However, once the participant notices that if the number
of lilies doubles every day, and the lake is full on day 60,
this implies that on day 59 the lake is half–covered. On the
next day (day 60), the number of lilies double and the lake is
fully covered. In this case, shifting the problem representa-
tion (e.g., starting with a full lake instead of an empty one)
essentially amounts to solving the problem, and one does not
need to write down any equation to solve it.

While the previous example is typically referred as an in-
sight problem, not all examples of change in problem space
involve creativity. Consider the TSP on a Euclidean plane.
As a reminder, the TSP refers to a task of finding the shortest
tour of N cities (points). An algorithm that guarantees find-
ing the shortest tour may, in the worst case, have to perform
a number of operations that is an exponential function of the
number of cities (Lawler, Lenstra, Rinnooy Kan, & Shmoys,
1992). This is impractical even for moderate N because an
exponential function grows very quickly. Yet, human partici-
pants can find near–optimal tours in linear time for N as large
as 120 (Dry et al., 2006). Consider Figure 1, which shows
four clusters of cities. This 13–city TSP has over 200 million
possible tours, but it usually takes less than half a minute for
a human observer to produce a near–optimal tour. The four
clusters form a convex quadrilateral, which determines the
order in which these clusters should be visited. The remain-
ing decisions are about the order in which the cities within
the clusters should be visited. It is not obvious what the best
order is, but selecting an incorrect order within clusters does
not matter much. Errors within clusters only produce small
differences in the overall TSP tour length. The hypothesis
that humans produce TSP tours by forming and using clus-
ters was originally proposed by Graham et al. (2000).

Two things are worth noting at this point. First, the ap-
proach described to solve the TSP is very methodical and
does not involve insight or creativity (i.e., there is no Aha!
moment associated with the use of clustering). Second, the
representation of the problem that humans solve is differ-
ent from the problem that is posed to them (Fleischer et al.,
2018). In the TSP, participants are asked to find the shortest
tour, which requires calculating the lengths of all possible
tours. However, humans instead decompose the global op-
timization problem into a series of local optimizations that
can be handled with limited WM. Local optimizations, in
general, may produce highly suboptimal solutions. But par-
ticipants avoid bad solutions by using global–to–local series
of optimizations: global optimization on a coarse represen-
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Figure 1. TSP with 13 cities. The clusters form a quadrilat-
eral.

tation to link clusters, followed by within–cluster tours on
gradually finer–grained representations. This works well if
the problem space allows for hierarchical clustering based on
some proximity metric and the assumption that the same met-
ric can be applied everywhere in the problem space (a form
of symmetry of the clustering operation). When the TSP
becomes non–metric however, human participants struggle
because they can no longer produce good tours using local
computations (Sajedinia, Pizlo, & Hélie, 2019).

Some problems are visual, like TSP on a Euclidean plane
(described above) or visual navigation, but other problems
may not have an obvious visual representation (Lovett & For-
bus, 2017). Algebra problems, first order logic, and chess
are examples. Visual problems have a useful iconic repre-
sentation, but more abstract problems require the creation of
a propositional representation (Kunda, McGregor, & Goel,
2013). One common type of propositional representation is
directed graphs (Angerer & Schreiber, 2019). Propositional
representations can emerge from restructuring (or recoding)
the iconic visual representation, or be created following task
instructions (e.g., learning the rules and constraints of the
problem). There is currently no agreement or integrative
theory of how humans build internal representations. But
regardless of how the problem representation was created,
qualitatively different representations can be processed using
different operations (Hélie & Sun, 2010). For example, mul-
tiplying roman numerals is tedious, but multiplying arabic
numbers is much easier.

What does this all mean? We argue that one of the fun-
damental characteristics of human problem solving is that
humans use, whenever possible, the concept of direction in

solving problems (i.e., they move towards the solution with-
out considering alternative choices; Pizlo & Li, 2005). When
they are asked to produce a shortest path, which is equivalent
to the minimization of distance traveled, they actually do not
use distance. Using distance (or cost), as is common in AI
algorithms, will necessarily lead to expensive search. Using
direction allows humans to decide about the next step, with-
out considering alternatives. This may sound like magic, but
its not. Consider the simplest case of 2 points on a Euclidean
plane. When asked to connect these points by a shortest
curve, humans draw a straight line that begins at one of these
points and has a direction pointing to the other point. When
drawing the straight line, humans are not aware of how long
it is. The length is irrelevant here for obvious reasons. The
same applies when one needs to walk to someone to transfer
an object. If the transaction is pressing, the individual will
try to find the quickest way to reach the other party. Distance
is not measured; one just walks towards the other person and
feels confident that s/he travelled the shortest distance.

When a surface other than a plane is considered, the con-
cept of a straight line generalizes to the concept of a geodesic
in differential geometry (Hilbert & Cohn-Vossen, 1952). A
geodesic line is the shortest path between two points and it
can be produced by maintaining the same direction when
moving from point to point. In other words, a geodesic on
a surface does not introduce an unnecessary curvature to
the path. When graphs are used to represent problems, the
concept of a geodesic on a smooth surface does not apply.
Straight lines don’t exist in graphs and neither curvatures of
surfaces or paths. But, if there is a way to translate the global
characteristics of the problem into a local decision for where
to go next, this condition resembles direction on a Euclidean
plane. Using direction is a simple way to produce near–
optimal solutions to a wide range of problems very quickly
with minimal use of WM. This is true with the TSP, 15–
puzzle, and a number of other problems. The visual sys-
tem may provide the computational machinery for handling
spatially–global computations effectively, including the use
of global features in specifying local directions. This is pos-
sible because the visual system is a massively parallel com-
putational system. This feature allows the visual system to
keep multiple representations of the problem and to navigate
the representations from a global–to–local or local–to–global
characteristics.

Reducing computational complexity is intelligence

Why is human research in problem solving important for
AI development? Let’s begin by using a simple example
problem: 15–puzzle (see Figure 2). It has been established
that for the 15–puzzle, the length of the optimal solution
ranges from 0 to 80 (depending on how the tiles are arranged
in the start state). For comparison, the length of the opti-
mal solution for the simpler (similar) 8–puzzle ranges from
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0 to 31. For larger sizes of this puzzle (n2 − 1), the length
of optimal solutions are not known, yet. The search space
is simply too large. Korf (1985) proposed an algorithm for
solving 15–puzzle called “iterative deepening A*”. The al-
gorithm guarantees finding the shortest path, but the number
of nodes that are evaluated can be quite large. To illustrate
the algorithm’s performance, Korf randomly generated 100
start states of 15–puzzle and solved them using the algorithm.
The optimal solutions had lengths between 41 and 66 steps.

Consider the start state shown in the left side of Figure
2. In Korfs (1985) example problems, the goal state had
the empty square in top left corner, and all other digits were
ordered from left–to–right and from top–to–bottom (see the
right side of Figure 2). The empty square was coded using
the number 0 (whereas in Figure 2, the empty square is sim-
ply represented by an empty space). If we write the 4 rows of
15–puzzle as one row, Korfs goal state becomes: {0 1 2 3 4 5
6 7 8 9 10 11 12 13 14 15}. The start state shown in Figure 2
is: {15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4}. Iterative deepening
A* uses a cost function that counts for each tile how many
squares it needs to be moved to reach its goal state. The cost
for all tiles are then summed. For example, Tile 2 in Figure 2
needs to be moved one step to the right to reach the goal state.
In contrast, Tile 15 needs to be moved 6 steps (3 steps down,
3 steps right). Using this cost function, the start state shown
in Figure 2 has a cost of 43, which is a lower bound of the
shortest path. The optimal solution for this problem requires
65 steps. Korfs algorithm visited 6,009,130,748 states to de-
termine the shortest path to get to the goal state. The total
number of states in 15–puzzle is about 1013. This means that
Korfs algorithm explored close to 0.001 of the entire problem
space. This is a large fraction of the problem space. Humans
will never do that. One of us (Pizlo) rearranged the tiles from
Korfs start state to the goal state and it took 121 steps (about
2 minutes). It is clear that Pizlo did not find the shortest path
(65 steps), but his effort (121 steps) was much more eco-
nomical than the effort of Korfs AI algorithm (over 6 billion
steps). To put succinctly, “producing the optimal solution” is
not the same as “optimally producing a solution”. Typically,
AI agents focus on the former, whereas humans focus on the
latter.

The example above illustrates that humans solve problems
by both changing the problem representation (Pizlo did not
consider all tiles simultaneously) and repeatedly applying
simple (cheap) operators. For example, most humans solv-
ing the 15–puzzle focus on one tile at a time, and treat all
other tiles as indistinguishable. This simplification greatly
reduces the size of the problem space. The assumption here
is that applying the operator (moving a tile) is cheap when
only the position of the tile being moved is considered, so
121 applications of the operator in a reduced problem space
may be less costly than applying the operator 65 times in the
complete problem space (when the positions of all tiles are

considered).
We argue that solving problems with AI could take a simi-

lar approach. Generating human–like operators and agents to
facilitate relevant processes is very important in the field of
robotic and artificial intelligence. While an AI agent could,
in theory, have infinite memory and processing power, com-
putation is expensive in time and energy. AI developers have
already begun replicating many important humans cognitive
processes, such as vision, language processing, etc. These
implementations enable artificial agents to understand the
environment in a more human–like way (Barto, Singh, &
Chentanez, 2004; Wang et al., 2019). Just like humans, one
could program an artificial agent that focuses on one tile at
a time and ignore all other tiles. The memory requirement
and branching of the search would be much reduced, so even
if more operations are needed it may still be faster and more
economical. This can be important for real–time computa-
tion – e.g., with a moving robot or when the environment is
dynamic.

While the previous example reduces computation by
changing the problem representation, the operators are not
changed: humans are still moving tiles the same way as they
would when considering all tile locations. It can be quite
clear that in some other cases the operators that are allow-
able can be changed by the problem representation. For
example, one can use localist (one node = one concept) or
distributed representations (one pattern of activation = one
concept) in connectionist networks. Localist representations
are symbolic and do not allow for a notion of distance or
direction in hyperspace (all the vectors are orthogonal).3 In
contrast, distributed representations define a space with dis-
tances and directions. Hence, the type of approach proposed
earlier where direction is used to solve spatial problems can-
not be used with localist representations (because concepts
are symbolic and either the same or different). The way the
problem is represented can affect the operations that are pos-
sible. Heuristics that require ordering distances or proximi-
ties would not be possible with a purely symbolic represen-
tation, and these are important when the quality of a solution
is to be evaluated continuously (more or less correct) instead
of all–or–none (correct or incorrect).

What is the best way to include these heuristics in AI?
Humans use heuristics spontaneously out of necessity: our
cognitive abilities and the amount of effort we are whiling to
expend are limited. It is very likely that evolution played an
important role in selecting agents who could optimize the
cost/benefit trade–off of the algorithms they used to solve
problems. Computers do not face these limitations and are
not the result of millions of years of evolution, so these
heuristics need to be either hard–coded in the agent, or an

3One can allow for real–value activation of localist representa-
tions, giving a notion of match, but there is still no real geometry
between the concepts.
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Figure 2. The 15–puzzle. Left: Start state of Korf’s (1985) Problem 88. Right: Goal state.

automated processes to learn heuristics needs to be included.
A mixture of both is probably ideal, because the mechanisms
required to solve the problems, which depend on the problem
space representation itself, can be simple or complicated de-
pending on the problem representation. Given that most nat-
ural problems are ill–defined, the problem information needs
to be abstracted by detecting the patterns and the rules from
the environments (Davidson & Sternberg, 2003). In humans,
this can be achieved by contextualizing the problem, that is,
bringing to mind knowledge about past situations that were
similar using, e.g., analogies, metaphors, or case–base rea-
soning.

The way the problem space is represented restricts what
type of operators are allowed to search the space (Newell &
Simon, 1972). Capturing and approximating human heuris-
tics by integrating different cues can enable computer agents
to generate better human–like solutions when facing com-
plicated problems (Gardner, 2019). Reinforcement learning
agents are common computational algorithms that can im-
plement human–like heuristics (e.g., Katsikopoulos, Şimşek,
Buckmann, & Gigerenzer, 2021; Şimşek, 2020). They model
a sequential process where humans interact with the envi-
ronment repeatedly and generate valuable solutions based on
feedback from the environment (Barto et al., 2004). As a
result, they capture the dynamic of the environment directly.
Reinforcement learning agents have been used to solve diffi-
cult problems such as the Rubiks cube (Agostinelli, McAleer,
Shmakov, & Baldi, 2019), the gizmo problem (Dandurand,
Bowen, & Shultz, 2004), etc. The agents achieve good per-
formance in performing the tasks, typically by using cues
to guide the search in useful ways. The cue weights are
learned using trial–and–error. The human problem solving
process, however, is more complicated. Humans use previ-
ous knowledge to solve new problems, and they tend to learn
efficiently from examples. Dandurand et al. (2004) defined
imitative learning to capture analogy, reasoning, and gener-
alization related abilities. Imitative learning could be very
beneficial, if successfully applied by the artificial agent, in

reducing training effort and enabling expert–like thinking.
Integrating different evidence and making human–like

decisions are important aspects of reinforcement learning
agents. However, this process can be extremely hard given
the number and dimension of pieces of information, alter-
natives, and cues available in the environment (Shah & Op-
penheimer, 2008). Human’s natural tendencies and heuris-
tics to simplify the environment are not directly available in
computer agents. They have been developed over years of
cultural evolution (Rich et al., 2020). They can be subopti-
mal, but they can also be useful in different situations: effort
reduction is usually assumed to be the main purpose of using
heuristics. For example, perceptual fluency and preference
lead to a fast and frugal thinking style, which gives rise to
recognition heuristics or warm glow heuristics styles of pro-
cessing. The biases introduced by these kinds of heuristics
change the availability of different cues and enable a more
targeted search (Shah & Oppenheimer, 2008). This biased
integration of cues according to their perceived importance
helps to develop faster and better–structured reinforcement
learning agents. It also helps to balance between exploration
and exploitation to exploit the most beneficial resources and
construct the most effective solutions (Drake, Kheiri, Özcan,
& Burke, 2020; Smith, 1983; Yahosseini & Moussaïd, 2019).

Conclusion

This article reviewed findings showing that humans often
times do not directly solve the problem that is presented to
them but instead solve a simpler version of it. Yet, the so-
lution provided by human solvers is often very good, if not
optimal. Many problems are highly complex and cannot be
solved with reasonable computing resources in a reasonable
amount of time. Studying human problem solving can be
informative as to how the computational complexity of al-
gorithms used to solve problems can be reduced, and using
simpler algorithms or including heuristics to solve problems
in AI agents could be beneficial for fast, efficient, real–time
problem solving.



8 SÉBASTIEN HÉLIE

Overall, arguments in this article support the usefulness
of using human heuristics in AI programs. However, one
needs to also remember that heuristics have remarkable lim-
itations in guiding problem solving. They cannot guaran-
tee efficiency or solutions (Abel, 2003). The right type of
heuristics enables the algorithms to solve the problems more
effectively, but it does not guarantee an optimal solution ul-
timately. The trade–off between optimality and efficiency
needs to be considered by interested researchers (Gardner,
2019). This is why adaptability and human oversight are
needed. Much research suggests that human participants use
different strategies or heuristics based on the nature of the
problems. The problem representation that is built is critical
if the problem space is not intuitive, and human feedback can
help AI agents learn better representations and heuristics.
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