Jump to other news and events
Purdue signature
Purdue Laboratory for Computational Cognitive Neuroscience
 

Helie, S. (2024). The role of posterior parietal cortex in detecting changes in feedback contingency. Brain Structure & Function, 229, 775-787. [pdf]

Naik, A., Iqbal, R., Helie, S., & Ambike, S. (2024). Human movement strategies in uncertain environments: A synergy–based approach to the stability–agility tradeoff. Human Movement Science, 97, 103259. [Publisher's Website]

Onuchukwu, I., Esmaeili, B., & Helie, S. (2024). Application of automaticity theory in construction. Journal of Management in Engineering, 40, 04024018. [Publisher's Website]

Randez, A. & Helie, S. (2024). The roles of intrinsic motivation and capability–related factors in cognitive effort–based decision–making. Frontiers in Psychology, 15, 1303262. [Open Access]

Vishton, P. M. & Helie, S. (2024). Editorial: Emerging talents in human neuroscience: Cognitive neuroscience 2023. Frontiers in Human Neuroscience, 18, 1488829. [Publisher's Website]

Yao, S. & Helie, S. (2024). The effect of ostracism on prospective memory in problem solving. Heliyon, 10, e24895. [Open Access]

Helie, S. (2023). Editorial: Emerging talents in human neuroscience: Cognitive neuroscience 2022. Frontiers in Human Neuroscience, 17, 1171860. [Open Access]

Helie, S., Lim, L. X., Adkins, M. J., & Redick, T. S. (2023). A computational model of prefrontal and striatal interactions in perceptual category learning. Brain and Cognition, 168, 105970. [pdf] [Experiment Material]

Kumar, S.,  & Helie, S.  (Eds.) (2023). Emerging Talents in Human Neuroscience: Cognitive Neuroscience 2022. Frontiers in Human Neuroscience. [Open Access]

Lim, L. X., Fansher, M., & Helie, S. (2023). Do cognitive and physical effort costs affect choice behavior similarly? Journal of Mathematical Psychology, 112, 102727. [pdf]

Monni, A., Scandola, M., Helie, S., & Scalas, L. F. (2023). Cognitive flexibility assessment with a new reversal learning task paradigm compared with the Wisconsin Card Sorting Test exploring the moderating effect of gender and stress. Psychological Research, 87, 1439-1453. [Publisher's Website]

Calic, G., Mosakowski, E., Bontis, N., & Helie, S. (2022). Is maximizing creativity good? The importance of elaboration and internal confidence in producing creative ideas. Knowledge Management Research & Practice, 20, 776-791. [Publisher's Website]

Fansher, M., Shah, P., & Helie, S. (2022). The effect of mode of presentation on Tower of Hanoi problem solving. Cognition, 224, 105041. [pdf]

Helie, S. & Pizlo, Z. (2022). When is psychology research useful in artificial intelligence? A case for reducingcomputational complexity in problem solving. Topics in Cognitive Science, 14, 687-701. [pdf]

Helie, S., Shamloo, F., Zhang, H., & Ell, S. W. (2021). The impact of training methodology and representation on rule-based categorization: An fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 21, 717-735. [pdf]

Kovacs, P., Helie, S., Tran, A. N., & Ashby, F. G. (2021). A neurocomputational theory of how rule–guided behaviors become automatic. Psychological Review, 128, 488-508. [pdf]


2015 - 2020

Edmondson, D. A., Yeh, C. L., Helie, S., & Dydak, U. (2020). Whole–brain R1 predicts manganese exposure and biological effects in welder. Archives of Toxicology, 94, 3409-3420. [Publisher's Website]

Ell, S. W., Smith, D. B., Deng, R., & Helie, S. (2020). Learning and generalization of within-category representations in a rule-based category structure. Attention, Perception, & Psychophysics, 82, 2448-2462. [pdf]

Fleischer, P. & Helie, S. (2020). A unified model of rule–set learning and selection. Neural Networks, 124, 343-356. [pdf]

Helie, S., Shamloo, F., & Ell, S. W. (2020). The impact of training methodology and category structure on the formation of new categories from existing knowledge. Psychological Research, 84, 990-1005. [pdf]

Mishra, P. & Helie, S. (2020). 3D shape estimation in a constraint optimization network. Vision Research, 177, 118-129. [Article] [Supplementary material]

Shamloo, F. & Helie, S. (2020). A study of individual differences in categorization with redundancy. Journal of Mathematical Psychology, 99, 102467. [pdf]

Calic, G., Helie, S., Bontis, N., & Mosakowski, E. (2019). Creativity from paradoxical experience: A theory of how individuals achieve creativity while adopting paradoxical frames. Journal of Knowledge Management, 23, 397-418. [Publisher's Website]

Helie, S. & Sajedinia, Z. (2019). Computational models of Parkinson’s disease. In V. Cutsuridis (Ed.). Multi–Scale Models of Brain Disorders (pp. 105–112). Springer.

Lim, L. X. & Helie, S. (2019). Exploration and exploitation reflect system-switching in learning. In G. Ashok, C. Seifert, & C. Freksa (Eds.). Proceedings of the 41st Annual Meeting of the Cognitive Science Society (pp. 2154–2160). Austin, TX: Cognitive Science Society. [pdf]

Sajedinia, Z., Pizlo, Z., & Helie, S. (2019). Investigating the role of the visual system in solving the traveling salesperson problem. In G. Ashok, C. Seifert, & C. Freksa (Eds.). Proceedings of the 41st Annual Meeting of the Cognitive Science Society (pp. 2702–2707). Austin, TX: Cognitive Science Society. [pdf]

Calic, G. & Helie, S. (2018). Creative sparks or paralysis traps? The effects of contradictions on creative processing and creative products. Frontiers in Psychology, 9, 1489. [Open Access]

Crossley, M., Roeder, J., Helie, S., & Ashby, F. (2018). Trial–by–trial switching between procedural and declarative categorization systems. Psychological Research, 82, 371-384. [pdf]

Fleischer, P., Helie, S., & Pizlo, Z. (2018). The role of problem representation in producing near–optimal TSP tours. Journal of Problem Solving, 11, 2. [Open Access]

Helie, S. & Fansher, M. (2018). Categorization system–switching deficits in typical aging and Parkinson’s disease. Neuropsychology, 32, 724-734. [pdf]

Helie, S., Turner, B., & Cousineau, D. (2018). Can categorical knowledge be used in visual search? Acta Psychologica, 191, 52-62. [pdf]

Sajedinia, Z., & Helie, S. (2018). A new computational model for astrocytes and their role in biologically-realistic neural networks. Computational Intelligence and Neuroscience, 2018, 3689487. [Open Access]

Ell, S. W., Smith, D. B., Peralta, G., & Helie, S. (2017). The impact of category structure and training methodology on learning and generalizing within–category representations. Attention, Perception, & Psychophysics, 79, 1777-1794. [pdf]

Helie, S. (2017). Practice and preparation time facilitate system–switching in perceptual categorization. Frontiers in Psychology, 8, 1964. [Open Access]

Helie, S. (2017). The effect of integration masking on visual processing in perceptual categorization. Brain and Cognition, 116, 63-70. [pdf]

Helie, S., Shamloo, F., & Ell, S. (2017). The effect of training methodology on knowledge representation in categorization. PLOS ONE, 12, e0183904. [Open Access]

Helie, S., Shamloo, F., Novak, K., & Foti, D. (2017). The roles of valuation and reward processing in cognitive function and psychiatric disorders. Annals of the New York Academy of Sciences, 1395, 33-48. [pdf]

Helie, S., Turner, B. O., Crossley, M. J., Ell, S. W., & Ashby, F. G. (2017). Trial-by-trial identification of categorization strategy using iterative decision bound modeling. Behavior Research Methods, 49, 1146-1162. [pdf]

Ross, M., Chartier, S., & Helie, S. (2017). The neurodynamics of categorization: Critical challenges and proposed solutions. In H. Cohen & C. Lefebvre (Eds.). Handbook of Categorization in Cognitive Science. 2nd Edition (pp. 1053–1076). Oxford: Elsevier.

Berberian, N., Aamir, Z., , Helie, S., and Chartier, S. (2016). Encoding sparse features in a bidirectional associative memory. Proceedings of the International Joint Conference on Neural Networks (pp. 5119-5126), Vancouver, BC. IEEE Press.

Calic, G. & Helie, S. (2016). Big ideas, one small idea at a time: The power of cognitively proximate search to drive action on cognitively distant ideas. 32nd EGOS Colloquium, Naples, IT.

Donaldson, K., Oumeziane, B., Helie, S., & Foti, D. (2016). The temporal dynamics of reversal learning: P3 amplitude predicts valence-specific behavioral adjustment. Physiology & Behavior, 161, 24-32. [pdf]

Helie, S. & Fleischer, P. (2016). Simulating the effect of reinforcement learning on neuronal synchrony and periodicity in the striatum. Frontiers in Computational Neuroscience, 10, 40. [Open Access]

Shamloo, F. & Helie, S. (2016). Changes in default mode network as automaticity develops in a categorization task. Behavioural Brain Research, 313, 324-333. [pdf]


2010 - 2015

Calic, G., Helie, S., & Mosakowski, E. (2015). Nonlinear effects of paradoxical frames on creativity. 31st EGOS Colloquium, Athens, Greece.

Helie, S., & Cousineau, D. (2015). Differential effect of visual masking in perceptual categorization. Journal of Experimental Psychology: Human Perception and Performance, 41, 816-825. [pdf]

Helie, S., Ell, S.W., & Ashby, F.G. (2015). Learning robust cortico-frontal associations with the basal ganglia: An integrative review. Cortex, 64, 123-135. [pdf]

Helie, S., Ell, S.W., Filoteo, J.V., & Maddox, W. T. (2015). Criterion learning in rule-based categorization: Simulation of neural mechanism and new data. Brain and Cognition, 95, 19-34. [pdf]

Helie, S., & Paul, E. J. (2015). Computational models of Parkinson's disease cognitive deficits. Scholarpedia, 10, 32137. [Open Access]

Helie, S., Roeder, J. L., Vucovich, L., Rünger, D., & Ashby, F. G. (2015). A neurocomputational model of automatic sequence production. Journal of Cognitive Neuroscience, 27, 1412-1426. [pdf]

Helie, S. & Sun, R. (2015). Cognitive architectures and agents. In J. Kacprzyk & W. Pedrycz (Eds.) Springer Handbook of Computational Intelligence (pp. 683-696). Springer. [pdf]

Sun, R., & Helie, S.(2015). Accounting for creativity using a psychologically realistic cognitive architecture. In T. R. Besold, M. Schorlemmer, & A. Small (Eds.) Computational Creativity Research: Towards Creative Machines (pp. 151-166). Springer. [pdf]

Barbu, A., Barrett, D., Chen, W., Siddarth, N., Xiong, C., Corso, J. J., Fellbaum, C. D., Hanson, C., Hanson, S. J., Helie, S., Malaia, E., Pearlmutter, B. A., Siskind, J. M., Talavage, T. M., Wilbur, R. B. (2014). Seeing is worse than believing: Reading people’s minds better than computer-vision methods recognize actions. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.). Computer Vision – ECCV 2014 (pp. 612-627). Springer. [pdf]

Cousineau, D., & Helie, S. (2014). Outstanding data sets: A new category of articles that promotes modelling published in the Quantitative Methods for Psychology. The Quantitative Methods for Psychology, 10, 1-4. [pdf]

Filoteo, J.V., Paul, E.J., Ashby, F.G., Frank, G.K.W. , Helie, S., Rockwell, R., Bischoff-Grethe, A., Wierenga, C., & Kaye, W.H. (2014). Simulating category learning and set shifting deficits in patients weight-restored anorexia nervosa. Neuropsychology, 28, 741-751. [pdf]

Helie, S. & Cousineau, D. (2014). The cognitive neuroscience of automaticity: Behavioral and brain signatures. In M.-K. Sun (Ed.). Advances in Cognitive and Behavioral Sciences (pp. 141–159). Nova Science Publishers. [pdf]

Helie, S. & Sun, R. (2014). An integrative account of memory and reasoning phenomena. New Ideas in Psychology, 35, 36-52. [pdf]

Helie, S. & Sun, R. (2014). Autonomous Learning in Psychologically-Oriented Cognitive Architectures: A Survey. New Ideas in Psychology, 34, 37-55. [pdf]

Cousineau, D., & Helie, S. (2013). Improving maximum likelihood estimation using prior probabilities: A tutorial on maximum a posteriori estimation and an examination of the Weibull distribution. Tutorials in Quantitative Methods for Psychology, 9, 61-71. [pdf]

Cousineau, D., Lacroix, G.L., Giguere, G., & Helie, S. (2013). Learning curves as strong evidence for testing models: The EBRW case. Journal of Mathematical Psychology, 57, 107-116. [pdf]

Helie, S. (Ed.). (2013). The Psychology of Problem Solving: An Interdisciplinary Approach. New York: Nova Publishers.

Helie, S. (2013). Towards a unified neurobiological theory of creative problem solving. Proceedings of the International Joint Conference on Neural Networks (pp. 1622-1629). Dallas, TX: IEEE Press. [pdf]

Helie, S., Chakravarthy, S., & Moustafa, A. A. (2013). Exploring the cognitive and motor functions of the basal ganglia: An integrative review of computational cognitive neuroscience models. Frontiers in Computational Neuroscience, 7, 174. [Open Access]

Soto, F.A., Waldschmidt, J.G., Helie, S. & Ashby, F.G. (2013). Brain activity across the development of automatic categorization: A comparison of categorization tasks using multi-voxel pattern analysis. NeuroImage, 71, 284-297. [pdf]

Sun, R., & Helie, S. (2013). Psychologically realistic cognitive agents: Taking human cognition seriously. Journal of Experimental & Theoretical Artificial Intelligence, 25, 65-92. [pdf]

Helie, S. & Sun, R. (2013). Implicit cognition in problem solving. In. S. Helie (Ed.) The Psychology of Problem Solving: An Interdisciplinary Approach (pp. 45-59). New York: Nova Publishers. [pdf]

Ell, S. W., Helie, S., & Hutchinson, S. (2012). Contributions of the putamen to cognitive function. In A. Costa & E. Villalba (Eds.) Horizon in Neuroscience. Volume 7 (pp. 29-52). Nova Publishers. [pdf]

Helie, S. & Ashby, F. G. (2012). Learning and transfer of category knowledge in an indirect categorization task. Psychological Research, 76, 292-303. [pdf]

Helie, S., Paul, E.J., & Ashby, F.G. (2012). A neurocomputational account of cognitive deficits in Parkinson's disease. Neuropsychologia, 50, 2290-2302. [pdf]

Helie, S., Paul, E.J., & Ashby, F.G. (2012). Simulating the effect of dopamine imbalance on cognition: From positive affect to Parkinson's disease. Neural Networks, 32, 74-85. [pdf]

Sun, R., & Helie, S. (2012). Reasoning with heuristics and induction: An account based on the CLARION cognitive architecture. Proceedings of the International Joint Conference on Neural Networks (pp. 1359-1366). Brisbane, AU: IEEE Press. [pdf]

Ashby, F. G. & Helie, S. (2011). A Tutorial on Computational Cognitive Neuroscience: Modeling the Neurodynamics of Cognition. Journal of Mathematical Psychology, 55, 273-289. [pdf]

Helie, S., Paul, E. J., & Ashby, F. G. (2011). Simulating Parkinson's disease patient deficits using a COVIS-based computational model. Proceedings of the International Joint Conference on Neural Networks (pp. 207-214). San Jose, CA: IEEE Press. [pdf]

Helie, S., Proulx, R., & Lefebvre, B. (2011). Bottom-up learning of explicit knowledge using a Bayesian algorithm and a new Hebbian learning rule. Neural Networks, 24, 219-232. [pdf]

Helie, S. & Sun, R. (2011). How the Core Theory of CLARION Captures Human Decision-Making. Proceedings of the International Joint Conference on Neural Networks (pp. 173-180). San Jose, CA: IEEE Press. [pdf]

Helie, S., Roeder, J. L., & Ashby, F. G. (2010). Evidence for cortical automaticity in rule-based categorization. Journal of Neuroscience, 30, 14225-14234. [Open Access]

Helie, S. & Sun, R. (2010). Creative problem solving: A CLARION theory. Proceedings of the International Joint Conference on Neural Networks (pp. 1460-1466). Barcelona, ES: IEEE Press. [pdf]

Helie, S. & Sun, R. (2010). Incubation, insight, and creative problem solving: A unified theory and a connectionist model. Psychological Review, 117, 994-1024. [pdf] [Simulation Code]

Helie, S., Waldschmidt, J. G., & Ashby, F. G. (2010). Automaticity in rule-based and information-integration categorization. Attention, Perception, & Psychophysics, 72, 1013-1031. [pdf]


Pre 2010

Helie, S. & Ashby, G. F. (2009). A neurocomputational model of automaticity and maintenance of abstract rules. Proceedings of the International Joint Conference on Neural Networks (pp. 1192-1198). Atlanta, GA: IEEE Press. [pdf]

Helie, S. & Sun, R. (2009). Simulating incubation effects using the Explicit - Implicit Interaction with Bayes factor (EII-BF) model. Proceedings of the International Joint Conference on Neural Networks (pp. 1199-1205). Atlanta, GA: IEEE Press. [pdf]

Helie, S. (2008). Energy Minimization in the Nonlinear Dynamic Recurrent Associative Memory. Neural Networks, 21, 1041-1044. [pdf]

Helie, S. & Sun, R. (2008). Knowledge integration in creative problem solving. In B.C. Love, K. McRae, & V.M. Sloutsky (Eds.) Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 1681-1686). Austin, TX: Cognitive Science Society. [pdf]

Helie, S., Sun, R., & Xiong, L. (2008). Mixed effects of distractor tasks on incubation. In B.C. Love, K. McRae, & V.M. Sloutsky (Eds.) Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 1251-1256). Austin, TX: Cognitive Science Society. [pdf]

Helie, S. (2007). Understanding statistical power using noncentral probability distributions: Chi-squared, G-squared, and ANOVA. Tutorials in Quantitative Methods for Psychology, 3, 63-69. [pdf]

Helie, S. (2006). An introduction to model selection: Tools and algorithms. Tutorials in Quantitative Methods for Psychology, 2, 1-10. [pdf]

Helie, S., Chartier, S., & Proulx, R. (2006). Are unsupervised neural networks ignorant? Sizing the effect of environmental distributions on unsupervised learning. Cognitive Systems Research, 7, 357-371. [pdf]

Helie, S., Giguere, G., Cousineau, D., & Proulx, R. (2006). Using knowledge partitioning to investigate the psychological plausibility of mixtures of experts. Artificial Intelligence Review, 25, 119-138. [pdf]

Helie, S., Proulx, R., & Lefebvre, B. (2006). JPEX: A psychologically plausible Joint Probability EXtractor. In R. Sun & N. Miyake (Eds.) Proceedings of the 28th Annual Meeting of the Cognitive Science Society (pp. 1482-1487). Mahwah, NJ: Lawrence Erlbaum Associates. [pdf]

Chartier, S., Helie, S., Boukadoum, M., & Proulx, R. (2005). SCRAM: Statistically Converging Recurrent Associative Memory. Proceedings of the International Joint Conference on Neural Networks (pp. 723-728). Montreal, QC: IEEE Press. [pdf]

Helie, S. & Cousineau, D. (2005). Mixed effects of training on transfer. In B.G. Bara, L. Barsalou, & M. Bucciarelli (Eds.) Proceedings of the 27th Annual Meeting of the Cognitive Science Society (pp. 929-934). Mahwah, NJ: Lawrence Erlbaum Associates. [pdf]

Helie, S., Giguere, G., Cousineau, D., & Proulx, R. (2005). Are mixtures of experts psychologically plausible? In N. Creany (Ed.) AICS'05: Proceedings of the 16th Irish Conference on Artificial Intelligence and Cognitive Science (pp. 61-70). Coleraine, UK: University of Ulster. [pdf]

Proulx, R. & Helie, S. (2005). Adaptive categorization and neural networks. In C. Lefebvre & H. Cohen (Eds.) Handbook of Categorization in Cognitive Science (pp. 793-815). Oxford: Elsevier. [pdf]

Giguere, G., Helie. S., & Cousineau, D. (2004). Manifeste pour le retour des sciences en psychologie. Revue Quebecoise de Psychologie, 25, 117-130. [pdf]

Cousineau, D., Helie, S., & Lefebvre, C. (2003).Testing Curvatures of learning functions on individual trial and block average data. Behavior Research Methods, Instruments, and Computers, 35, 493-503. [pdf]

Cousineau, D., Lacroix, G. L., & Helie, S. (2003). Redefining the rules: Providing race models with a connectionist learning rule. Connection Science, 15, 27-43. [pdf]